Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Abdominal Injuries in Frontal Crashes: Influence of Occupant Age and Seating Position

2018-04-03
2018-01-0535
Objective: This study investigated the incidence of abdominal injuries in frontal crashes by occupant age and seating position. It determined the risk for abdominal injury (AIS 2+) by organ and injury source. Methods: 1997-2015 NASS-CDS was analyzed to estimate the occurrence of abdominal injuries in non-ejected, belted occupants involved in frontal crashes. Vehicles were included with 1997+ model year (MY). The annual incidence and rate for different types of abdominal injury were estimated with standard errors. The sources for abdominal injury were determined. Results: 77.8% of occupants were drivers, 16.7% were right-front passengers and 5.4% were rear passengers. Rear passengers accounted for 77.1% of 8-11 year old (yo) and 17.2% of 12-17 yo group. The risk for moderate abdominal injury (MAIS 2 + abdo) was 0.30% ± 0.053% in drivers, 0.32% ± 0.086% in right-front passengers and 0.38% ± 0.063% in rear occupants.
Journal Article

Assessment of the 50th Hybrid III Responses in Blunt Rear Impacts to the Torso

2021-04-06
2021-01-0919
Blunt impacts to the back of the torso can occur in vehicle crashes due to interaction with unrestrained occupants, or cargo in frontal crashes, or intrusion in rear crashes, for example. Six pendulum tests were conducted on the back of an instrumented 50th percentile male Hybrid III ATD (Anthropomorphic Test Device) to determine kinematic and biomechanical responses. The impact locations were centered with the top of a 15-cm diameter impactor at the T1 or at T6 level of the thoracic spine. The impact speed varied from 16 to 24 km/h. Two 24 km/h tests were conducted at the T1 level and showed repeatability of setup and ATD responses. The 16 and 24 km/h tests at T1 and T6 were compared. Results indicated greater head rotation, neck extension moments and neck shear forces at T1 level impacts. For example, lower neck extension was 2.6 times and 3.8 times greater at T1 versus T6 impacts at 16 and 24 km/h, respectively.
Journal Article

Basilar Skull Fractures by Crash Type and Injury Source

2011-04-12
2011-01-1126
Purpose: This study investigates NASS-CDS data on basilar skull fractures by crash type and injury source for various crash scenarios to understand the injury risks, injury mechanisms and contact sources. Methods: 1993-2008 NASS-CDS data was used to study basilar skull fractures in adult front occupants by crash type and injury source. Injury risks were determined using weighted data for occupants with known injury status in 1994+ model year vehicles. In-depth analysis was made of far-side occupants in side impacts and rear crashes using the NASS electronic cases. Results: Basilar skull fractures occur in 0.507 ± 0.059% of rollovers and 0.255 ± 0.025% of side impacts. The lowest risk is in rear impacts at 0.015 ± 0.007%. The most common contact source is the roof, side rails and header (39.0%) in rollovers, the B-pillar (25.8%) in side impacts and head restraint (55.3%) in rear crashes.
Technical Paper

Dual-Recliner ABTS Seats in Severe Rear Sled Testswith the 5th, 50th and 95th Hybrid III

2021-04-06
2021-01-0917
Seat strength has increased over the past four decades which includes a transition to dual recliners. There are seat collision performance issues with stiff ABTS and very strong seats in rear impacts with different occupant sizes, seating positions and physical conditions. In this study, eight rear sled tests were conducted in four series: 1) ABTS in a 56 km/h (35 mph) test with a 50th Hybrid III ATD at MGA, 2) dual-recliner ABTS and F-150 in a 56 km/h (35 mph) test with a 5th female Hybrid III ATD at Ford, 3) dual-recliner ABTS in a 48 km/h (30 mph) test with a 95th Hybrid III ATD leaning inboard at CAPE and 4) dual-recliner ABTS and Escape in 40 km/h (25 mph) in-position and out-of-position tests with a 50th Hybrid III ATD at Ford. The sled tests showed that single-recliner ABTS seats twist in severe rear impacts with the pivot side deformed more rearward than the stanchion side.
Technical Paper

Fatalities by Seating Position and Principal Direction of Force (PDOF) for 1st, 2nd and 3rd Row Occupants

2008-05-12
2008-01-1850
Purpose: A better understanding of rear occupant fatality risks is needed to guide the development of safety improvements for 2nd and 3rd row occupants. This study investigates fatal accidents of 1st, 2nd and 3rd row occupants by principal direction of force (PDOF), irrespective of restraint use. It determined the number of fatalities, exposure and fatality risk. Methods: 1996-2005 FARS was analyzed for occupant fatalities by seating position (1st, 2nd and 3rd row) and principal direction of force (1-12 o'clock PDOF, rollover and other/unknown). Light vehicles were included with model year 1990+. 1996-2005 NASS-CDS was similarly analyzed for occupant exposure. Fatality risk was defined as the number of fatalities in FARS for a given category divided by the exposure from NASS-CDS. Results: Ten percent (9.6%) of fatalities were to 2nd row occupants in FARS. About 2,080 deaths occur to 2nd row occupants annually. 38.4% died in rollovers and 26.8% in frontal crashes.
Technical Paper

Fatalities of Second-Row Children in Front, Side and Rear Impacts by Calendar Year (CY) and Model Year (MY)

2022-03-29
2022-01-0860
Field data was analyzed on second-row children in front, side and rear impacts to study fatality trends by model year (MY) and calendar year (CY) with 1980-2020 MY vehicles. The different MY and CY perspectives show changes in rates that are useful for setting priorities for second-row child safety in rear impacts. 1990 to 2019 FARS was queried to assess the number of fatally injured and non-ejected second-row children (0-15 years old) in crashes without fires. The children included outboard occupants seated behind an occupied front seat and center occupants. The data was analyzed for rear, front and side impacts to assess crash frequency. 1990-2015 POLK was queried to assess exposure of registered vehicles and estimate a fatality rate. The FARS and POLK data were sub-grouped by MY of the vehicle and CY of the crash. There were 2.8-times more fatally injured children in frontal crashes than in the rear crashes. The ratio of frontal and rear crashes varied with CY sub-groups.
Technical Paper

Field Accident Data Analysis of 2nd Row Children and Individual Case Reviews

2008-05-12
2008-01-1851
Child safety is an important issue. The objective of this study was to analyze field accident data for 0-7 year old children in the 2nd row by vehicle and crash type, irrespective of restraint use. The data was obtained from NASS-CDS for calendar years 1991-2005. Accidents were selected based on 2nd row occupancy in towaway light vehicles with model year 1990 or newer. Side impacts caused 30.9% of serious-to-fatal injury (MAIS 3+F) to 2nd row children followed by frontal impacts (29.8%), rollovers (24.4%) and rear crashes (15.0%). The highest risk for MAIS 3+F was in rollovers (2.8 ± 0.7%) followed by rear (1.4 ± 0.4%), side (1.0 ± 0.2%) and frontal (0.46 ± 0.10%) crashes. The differences are statistically significant (p <0.01). Individual rear and frontal impact cases were also reviewed to better understand injury mechanisms of children in the 2nd row. The cases were obtained from the 1997-2005 NASS-CDS electronic database.
Journal Article

Injury by Delta V in Front, Near-Side, Far-Side and Rear Impacts: Analysis of 1994-2015 NASS-CDS

2022-03-29
2021-36-0089
The risk for severe injury (MAIS 4+F) was determined by crash type, seatbelt use and crash severity (delta V) using 22 years of NASS-CDS from 1994-2015 with all light vehicles and occupants 15+ years old. There were 9 increments of delta V from <16-72+ km/h (<10-45+ mph). Crashes were grouped by the location of damage to the front, near-side, far-side and rear. Injury risk was calculated by dividing the number of severely injured (MAIS 4+F) by the number of exposure (MAIS 0+F) occupants using weighted data. Standard errors were determined. The data and plots provide a national estimate of injury by delta V in front, near-side, far-side and rear impacts based on the multi-year field data in NASS-CDS.
Journal Article

Injury by Delta V in Front, Near-Side, Far-Side and Rear Impacts: Analysis of 1994-2015 NASS-CDS

2022-03-29
2022-01-0835
The risk for severe injury (MAIS 4+F) was determined by crash type, seatbelt use and crash severity (delta V) using 22 years of NASS-CDS from 1994-2015 with all light vehicles and occupants 15+ years old. There were 9 increments of delta V from <16-72+ km/h (<10-45+ mph). Crashes were grouped by the location of damage to the front, near-side, far-side and rear. Injury risk was calculated by dividing the number of severely injured (MAIS 4+F) by the number of exposure (MAIS 0+F) occupants using weighted data. Standard errors were determined. The data and plots provide a national estimate of injury by delta V in front, near-side, far-side and rear impacts based on the multi-year field data in NASS-CDS.
Technical Paper

Lumbar Spine Fractures in Undercarriage Impacts: Analysis of 1997-2015 NASS-CDS

2018-04-03
2018-01-0546
Objective: This is a descriptive study of the incidence of spinal injury by crash type using NASS-CDS. It provides an understanding of impacts to the undercarriage of the vehicle and injuries to the lumbar spine by reviewing electronic cases in NASS-CDS to determine crash circumstances for fractures of the lumbar spine with undercarriage impacts. Methods: 1997-2015 NASS-CDS was evaluated for serious injury (MAIS 3 + F) to front-seat occupants by seatbelt use and crash type in 1994+ MY vehicles. Undercarriage impacts were defined by GAD1 = U without a rollover. Serious injury was defined as MAIS 3 + F. Spinal injuries AIS 3+ were separated into cervical, thoracic and lumbar regions. Weighted data was determined using ratio weight. NASS-CDS electronic cases were downloaded from NHTSA with AIS 3+ lumbar spine injuries in undercarriage impacts. Results: There were 2,160 MAIS 3 + F injured occupants in undercarriage impacts. This was 0.23% of all serious injury.
Book

Occupant and Vehicle Responses in Rollovers

2004-03-08
During the past decade, there has been a steady increase in studies addressing rollover crashes and injuries. Though rollovers are not the most frequent crash type, they are significant with respect to serious injury and interest in rollovers has grown with the introduction of SUVs, vans, and light trucks. A review of Occupant and Vehicle Responses in Rollovers examines relevant conditions for field roll overs, vehicle responses, and occupant kinetics in the vehicle. This book edited by Dr. David C. Viano and Dr. Chantal S. Parenteau includes 62 technical documents covering 15 years of rollover crash safety, including field crash statistics, pre- and rollover dynamics, test procedures and dummy responses.
Technical Paper

Rollover Crash Sensing and Safety Overview

2004-03-08
2004-01-0342
This paper provides an overview of rollover crash safety, including field crash statistics, pre- and rollover dynamics, test procedures and dummy responses as well as a bibliography of pertinent literature. Based on the 2001 Traffic Safety Facts published by NHTSA, rollovers account for 10.5% of the first harmful events in fatal crashes; but, 19.5% of vehicles in fatal crashes had a rollover in the impact sequence. Based on an analysis of the 1993-2001 NASS for non-ejected occupants, 10.5% of occupants are exposed to rollovers, but these occupants experience a high proportion of AIS 3-6 injury (16.1% for belted and 23.9% for unbelted occupants). The head and thorax are the most seriously injured body regions in rollovers. This paper also describes a research program aimed at defining rollover sensing requirements to activate belt pretensioners, roof-rail airbags and convertible pop-up rollbars.
Technical Paper

Update on Second-Row Children Responses in Rear and Frontal Crashes with a Focus on the Potential Effect of Stiffening Front Seat Structures

2020-04-14
2020-01-1215
NHTSA has recently been petitioned to address the protection of second-row children in rear crashes due front seatback performance. The protection of children is important. However, it is more complex than assessing front seat performance in rear impacts. Viano, Parenteau (2008 [1]) analyzed cases of serious-to-fatally injured (MAIS 3+F) children up to 7 years old in the second row in rear impacts involving 1990+ model year vehicles using 1997-2005 NASS-CDS. They observed that intrusion was an important factor pushing the child forward into the back of the front seat, B-pillar or other front structure. To help assess whether stiffening the front seats would be beneficial for second-row child safety, the 2008 study was updated using more recent data and model year vehicles. In the present study, 1997-2015 NASS-CDS data were analyzed for serious-to-fatally (MAIS 3+F) injured 0- to 7-year old children in the second row with 1994+ model year vehicles.
Journal Article

Vehicle and Occupant Responses in a Friction Trip Rollover Test

2009-04-20
2009-01-0830
Objective: A friction rollover test was conducted as part of a rollover sensing project. This study evaluates vehicle and occupant responses in the test. Methods: A flat dolly carried a Saab 9-3 sedan laterally, passenger-side leading to a release point at 42 km/h (26 mph) onto a high-friction surface. The vehicle was equipped with roll, pitch and yaw gyros near the center of gravity. Accelerometers were placed at the vehicle center tunnel, A-pillar near the roof, B-pillar near the sill, suspension sub-frame and wheels. Five off-board and two on-board cameras recorded kinematics. Hybrid III dummies were instrumented for head and chest acceleration and upper neck force and moment. Belt loads were measured. Results: The vehicle release caused the tires and then wheel rims to skid on the high-friction surface. The trip involved roll angular velocities >300 deg/s at 0.5 s and a far-side impact on the driver’s side roof at 0.94 s. The driver was inverted in the far-side, ground impact.
X