Refine Your Search

Topic

Author

Search Results

Technical Paper

2-step Variable Valve Actuation: System Optimization and Integration on an SI Engine

2006-04-03
2006-01-0040
2-step variable valve actuation using early-intake valve closing is a strategy for high fuel economy on spark-ignited gasoline engines. Two discrete valve-lift profiles are used with continuously variable cam phasing. 2-step VVA systems are attractive because of their low cost/benefit, relative simplicity, and ease-of-packaging on new and existing engines. A 2-step VVA system was designed and integrated on a 4-valve-per-cylinder 4.2L line-6 engine. Simulation tools were used to develop valve lift profiles for high fuel economy and low NOx emissions. The intake lift profiles had equal lift for both valves and were designed for high airflow & residual capacity in order to minimize valvetrain switching during the EPA drive cycle. It was determined that an enhanced combustion system was needed to maximize fuel economy benefit with the selected valve lift profiles. A flow-efficient chamber mask was developed to increase in-cylinder tumble motion and combustion rates.
Technical Paper

A 6-Speed Automatic Transmission Plant Dynamics Model for HIL Test Bench

2008-04-14
2008-01-0630
During the production controller and software development process, one critical step is the controller and software verification. There are various ways to perform this verification. One of the commonly used methods is to utilize an HIL (hardware-in-the-loop) test bench to emulate powertrain hardware for development and validation of powertrain controllers and software. A key piece of an HIL bench is the plant dynamics model used to emulate the external environment of a modern controller, such as engine (ECM), transmission (TCM) or powertrain controller (PCM), so that the algorithms and their software implementation can be exercised to confirm the desired results. This paper presents a 6-speed automatic transmission plant dynamics model development for hardware-in-the-loop (HIL) test bench for the validation of production transmission controls software. The modeling method, model validation, and application in an HIL test environment are described in details.
Technical Paper

A Closed-Loop Drive-train Model for HIL Test Bench

2009-04-20
2009-01-1139
This paper presents a hardware-in-the-loop (HIL) test bench for the validation of production transmission controls software, with a focus on a closed-loop vehicle drive-train model incorporating a detailed automatic transmission plant dynamics model developed for certain applications. Specifically, this paper presents the closed-loop integration of a 6-speed automatic transmission model developed for our HIL transmission controller and algorithm test bench (Opal-RT TestDrive based). The model validation, integration and its application in an HIL test environment are described in details.
Technical Paper

A Hardware-in-the-loop Test Bench for Production Transmission Controls Software Quality Validation

2007-04-16
2007-01-0502
Production software validation is critical during software development, allowing potential quality issues that could occur in the field to be minimized. By developing automated and repeatable software test methods, test cases can be created to validate targeted areas of the control software for confirmation of the expected results from software release to release. This is especially important when algorithm/software development timing is aggressive and the management of development activities in a global work environment requires high quality, and timely test results. This paper presents a hardware-in-the-loop (HIL) test bench for the validation of production transmission controls software. The powertrain model used within the HIL consists of an engine model and a detailed automatic transmission dynamics model. The model runs in an OPAL-RT TestDrive based HIL system.
Technical Paper

Air Conditioning and Gas Guzzler Tax Credits

2002-06-03
2002-01-1958
Rising fuel prices at the pump has consumers taking a closer look at the actual fuel economy they get versus the general label values stated on the vehicle window sticker. The label values are calculated by applying fixed correction factors to the city and highway fuel economy test results. The purpose of the correction factors is to convert the results generated under laboratory conditions into values that can be expected by customers. Because of today's fuel economy labeling method, the differences between some new accessory drive component technologies are never reflected to the end consumer. For example, the air conditioning is not used during the fuel economy test. Instead it is lumped into this fixed correction factor. The purpose of this paper is to provide an overview of the magnitude of the air conditioning compressor load as compared to some other accessory drive loads and what causes these loads to vary.
Technical Paper

An Analytical and Experimental Study of a High Pressure Single Piston Pump for Gasoline Direct Injection (GDi) Engine Applications

2009-04-20
2009-01-1504
In recent years, gasoline direct injection (GDi) engines have been popular due to their inherent potential for reduction of exhaust emissions and fuel consumption to meet stringent EPA standards. These engines require high-pressure fuel injection in order to improve the atomization process and accelerate mixture preparation. The high-pressure fuel pump is an essential component in the GDi system. Therefore, understanding the flow characteristics of this device and its associated behavior is critical for improving the performance of this category of engines. In this paper, the fluid flow characteristics in a high-pressure single-piston pump for use in GDi engines are analyzed using 1-D LMS Imagine.Lab AMESim system and 3-D Ansys Fluent computational fluid dynamics (CFD) models. The flow rate of the fuel pump under various cam speeds has been examined along with characteristics of the pump's control valve.
Technical Paper

Analytical Design of Cockpit Modules for Safety and Comfort

2004-03-08
2004-01-1481
This paper reviews the state of the art on analytical design of cockpit modules in two most crucial performance categories: safety and comfort. On safety, applications of finite element analysis (FEA) for achieving robust designs that meet FMVSS 201, 208 and 214 requirements and score top frontal and side NCAP star-ratings are presented. On comfort, focus is placed on Noise, Vibration and Harshness (NVH) performance. Cutting-edge analytical tools for Buzz, Squeak and Rattle (BSR) avoidance and passenger compartment noise reduction are demonstrated. Most of the analytical results shown in this paper are based on the development work of a real-life application program. Correlations between the analytical results and physical test results are included. Examples of Computational Fluid Dynamics (CFD) analysis for climate control are also included. At the end, the road map toward 100 percent virtual prototyping and validation is presented.
Technical Paper

Analytical Predictions and Correlation With Physical Tests for Potential Buzz, Squeak, and Rattle Regions in a Cockpit Assembly

2004-03-08
2004-01-0393
The perceived interior noise has been one of the major driving factors in the design of automotive interior assemblies. Buzz, Squeak and Rattle (BSR) issues are one of the major contributors toward the perceived quality in a vehicle. Traditionally BSR issues have been identified and rectified through extensive hardware testing. In order to reduce the product development cycle and minimize the number of costly hardware builds, however, one must rely on engineering analysis and simulation upfront in the design cycle. In this paper, an analytical and experimental study to identify potential BSR locations in a cockpit assembly is presented. The analytical investigation utilizes a novel and practical methodology, implemented in the software tool Nhance.BSR, for identification and ranking of potential BSR issues. The emphasis here is to evaluate the software for the BSR predictions and the identification of modeling issues, rather than to evaluate the cockpit design itself for BSR issues.
Technical Paper

Application of Robust Engineering Methods to Improve ECU Software Testing

2006-04-03
2006-01-1600
Robust Engineering techniques developed by Taguchi have traditionally applied to the optimization of engineering designs. Robust Engineering methods also may be applied to software testing of ECU algorithms. The net result is an approach capable of improving the software algorithm in one of two ways. First the approach can identify the range of areas which prove problematic to the software such that a robust solution may be developed. Conversely, the approach can be used as a general strategy to verify that the software is robust over the range of inputs tested. The robust engineering methods applied to software testing utilize orthogonal array experiments to test software over a range of inputs. The actual software trials are best performed in the simulation environment and also via automated test hardware in the loop configurations in realtime. This paper outlines a process for applying Robust Engineering methods to software testing.
Technical Paper

CAE-Based Side Curtain Airbag Design

2004-03-08
2004-01-0841
Since its invention in early 1990s, the side curtain airbag has become an important part of the occupant restraint system for side impact and rollover protection. Computer Aided Engineering (CAE) is often used to help side curtain airbag design. Because of the unique characteristics of side curtain airbag systems, the simulation of side curtain airbag systems faces different challenges in comparison to the simulation of driver and passenger airbag systems. The typical side curtain airbag CAE analysis includes, but is not limited to, cushion volume evaluation, cushion coverage review, cushion shrinkage and tension force review, deployment timing review and seam shape and location review. The commonly used uniform pressure airbag models serve the purpose in most cases.
Technical Paper

CFRM Concept at Vehicle Idle Conditions

2003-03-03
2003-01-0613
The concept of condenser, fan, and radiator power train cooling module (CFRM) was further evaluated via three-dimensional computational fluid dynamics (CFD) studies in the present paper for vehicle at idle conditions. The analysis shows that the CFRM configuration was more prone to the problem of front-end air re-circulation as compared with the conventional condenser, radiator, and fan power train cooling module (CRFM). The enhanced front-end air re-circulation leads to a higher air temperature passing through the condenser. The higher air temperature, left unimproved, could render the vehicle air conditioning (AC) unit ineffective. The analysis also shows that the front-end air re-circulation can be reduced with an added sealing between the CFRM package and the front of the vehicle, making the CFRM package acceptable at the vehicle idle conditions.
Technical Paper

Characterization of a Catalytic Converter Internal Flow

2007-10-29
2007-01-4024
This paper includes a numerical and experimental study of fluid flow in automotive catalytic converters. The numerical work involves using computational fluid dynamics (CFD) to perform three-dimensional calculations of turbulent flow in an inlet pipe, inlet cone, catalyst substrate (porous medium), outlet cone, and outlet pipe. The experimental work includes using hot-wire anemometry to measure the velocity profile at the outlet of the catalyst substrate, and pressure drop measurements across the system. Very often, the designer may have to resort to offset inlet and outlet cones, or angled inlet pipes due to space limitations. Hence, it is very difficult to achieve a good flow distribution at the inlet cross section of the catalyst substrate. Therefore, it is important to study the effect of the geometry of the catalytic converter on flow uniformity in the substrate.
Technical Paper

Closed Loop Pressure Control System Development for an Automatic Transmission

2009-04-20
2009-01-0951
This paper presents the development of a transmission closed loop pressure control system. The objective of this system is to improve transmission pressure control accuracy by employing closed-loop technology. The control system design includes both feed forward and feedback control. The feed forward control algorithm continuously learns solenoid P-I characteristics. The closed loop feedback control has a conventional PID control with multi-level gain selections for each control channel, as well as different operating points. To further improve the system performance, Robust Optimization is carried out to determine the optimal set of control parameters and controller hardware design factors. The optimized design is verified via an L18 experiment on spin dynamometer. The design is also tested on vehicle.
Technical Paper

Co-Simulation Analysis of Transient Response and Control for Engines with Variable Valvetrains

2007-04-16
2007-01-1283
Modern engines are becoming highly complex, with several strongly interactive subsystems - - variable cam phasers on both intake and exhaust, along with various kinds of variable valve lift mechanisms. Isolated component models may not yield adequate information to deal with system-level interactive issues, especially when it comes to transient behavior. In addition, massive amounts of expensive experimental work will be required for optimization. Recent computing speed improvements are beginning to permit the use of co-simulation to couple highly detailed and accurate submodels of the various engine components, each created using the most appropriate available simulation package. This paper describes such a system model using GT-Power to model the engine, AMESim to model cam phasers and the engine lubrication system, and Matlab/Simulink to model the engine controllers and the vehicle.
Technical Paper

Co-Simulation Platform for Diagnostic Development of a Controlled Chassis System

2006-04-03
2006-01-1058
This paper discusses the development and application of a closed-loop co-simulation platform for a controlled chassis system. The platform is comprised of several software packages, including CarSim®(MSC Corporation), AmeSim®(ImaGine Software Corporation), MATLAB®/SIMULINK®(Mathworks Corporation). The platform provides the ability to quickly evaluate enhancements to existing algorithms and to evaluate new control or diagnostic concepts, making it a rapid medium for development, testing and validation. The co-simulation platform was configured with real vehicle calibration data and used to test the validity/limitations of a simple model-based sensor diagnostics strategy. Using this approach, it was possible to quickly check for performance issues and consider needed corrections or enhancements without incurring the time and cost burden associated with in-vehicle testing.
Technical Paper

Combustion Assisted Belt-Cranking of a V-8 Engine at 12-Volts

2004-03-08
2004-01-0569
Implementation of engine turnoff at idle is desirable to gain improvements in vehicle fuel economy. There are a number of alternatives for implementation of the restarting function, including the existing cranking motor, a 12V or 36V belt-starter, a crankshaft integrated-starter-generator (ISG), and other, more complex hybrid powertrain architectures. Of these options, the 12V belt-alternator-starter (BAS) offers strong potential for fast, quiet starting at a lower system cost and complexity than higher-power 36V alternatives. Two challenges are 1) the need to accelerate a large engine to idle speed quickly, and 2) dynamic torque control during the start for smoothness. In the absence of a higher power electrical machine to accomplish these tasks, combustion-assisted starting has been studied as a potential method of aiding a 12V accessory drive belt-alternator-starter in the starting process on larger engines.
Technical Paper

Control of Brake- and Steer-by-Wire Systems During Brake Actuator Failure

2006-04-03
2006-01-0923
In this paper a method of mitigating the consequences of potential brake actuator failure in vehicles with brake-by-wire (BBW) and possibly with steer-by-wire (SBW) systems is described. The proposed control algorithm is based on rules derived from general principles of vehicle dynamics. When a failure of one actuator is detected, the algorithm redistributes the braking forces among the remaining actuators in such a way that the desired deceleration of vehicle is followed as closely as possible, while the magnitude and the rate of change of the yaw moment caused by asymmetric braking are properly managed. When vehicle is equipped with BBW system only, or when the desired deceleration can be obtained by redistributing of braking forces, without generating an undesired yaw moment, no steering correction is used. Otherwise, a combination of brake force redistribution and steering correction (to counter the yaw moment generated by non-symmetric braking) is applied.
Technical Paper

Controlling Induction System Deposits in Flexible Fuel Vehicles Operating on E85

2007-10-29
2007-01-4071
With the wider use of biofuels in the marketplace, a program was conducted to study the deposit forming tendencies and performance of E85 (85% denatured ethanol and 15% gasoline) in a modern Flexible Fuel Vehicle (FFV). The test vehicle for this program was a 2006 General Motors Chevrolet Impala FFV equipped with a 3.5 liter V-6 powertrain. A series of 5,000 mile Chassis Dynamometer (CD) Intake Valve Deposits (IVD) and performance tests were conducted while operating the FFV on conventional (E0) regular unleaded gasoline and E85 to determine the deposit forming tendencies of both fuels. E85 test fuels were found to generate significantly higher levels of IVD than would have been predicted from the base gasoline component alone. The effects on the weight and composition of IVD due to a corrosion inhibitor and sulfates that were indigenous to one of the ethanols were also studied.
Technical Paper

Correlation Grading Methodology for Occupant Protection System Models

2004-03-08
2004-01-1631
Computer modeling and simulation have become one of the primary methods for development and design of automobile occupant protection systems (OPS). To ensure the accuracy and reliability of a math-based OPS design, the correlation quality assessment of mathematical models is essential for program success. In a typical industrial approach, correlation quality is assessed by comparing chart characteristics and scored based on an engineer's modeling experience and judgment. However, due to the complexity of the OPS models and their responses, a systematic approach is needed for accuracy and consistency. In this paper, a correlation grading methodology for the OPS models is presented. The grading system evaluates a wide spectrum of a computer model's performances, including kinematics, dynamic responses, and dummy injury measurements. Statistical analysis is utilized to compare the time histories of the tested and simulated dynamic responses.
Technical Paper

Design and Testing of a Prototype Midsize Parallel Hybrid-Electric Sport Utility

2004-01-25
2004-01-3062
The University of Wisconsin - Madison hybrid vehicle team has designed and constructed a four-wheel drive, charge sustaining, parallel hybrid-electric sport utility vehicle for entry into the FutureTruck 2003 competition. This is a multi-year project utilizing a 2002 4.0 liter Ford Explorer as the base vehicle. Wisconsin's FutureTruck, nicknamed the ‘Moolander’, weighs 2000 kg and includes a prototype aluminum frame. The Moolander uses a high efficiency, 1.8 liter, common rail, turbo-charged, compression ignition direct injection (CIDI) engine supplying 85 kW of peak power and an AC induction motor that provides an additional 60 kW of peak power. The 145 kW hybrid drivetrain will out-accelerate the stock V6 powertrain while producing similar emissions and drastically reducing fuel consumption. The PNGV Systems Analysis Toolkit (PSAT) model predicts a Federal Testing Procedure (FTP) combined driving cycle fuel economy of 16.05 km/L (37.8 mpg).
X