Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

Acceleration and Braking Performance of School Buses

2012-04-16
2012-01-0593
There is a limited amount of data currently available on the acceleration and braking performances of school buses. This paper analyzes the braking performance of various Type A and Type C school buses with hydraulic and air brakes. The effect of ABS and Non-ABS systems as well as driver experience is discussed. A comparison with passenger car braking performance is presented. The acceleration of a school bus is also presented. Evaluations of “normal” and “rapid” accelerations are presented for Type A and Type B buses. A comparison with commonly used acceleration values for various vehicles is presented.
Technical Paper

Accelerator-to-Brake Pedal Transition Movements during On-Road Stopping in an Older Population

2017-03-28
2017-01-1396
Unintended acceleration events due to pedal misapplication have been shown to occur more frequently in older vs. younger drivers. While such occurrences are well documented, the nature of these movement errors is not well-characterized in common pedal error scenarios: namely, on-road, non-emergency stopping or slowing maneuvers. It is commonly assumed that drivers move in a ballistic or “direct hit” trajectory from the accelerator to the brake pedal. However, recent simulator studies show that drivers do not always move directly between pedals, with older drivers displaying more variable foot trajectories than younger drivers. Our study investigated pedal movement trajectories in older drivers ages 67.9 ± 5.2 years (7 males, 8 females) during on-road driving in response to variable traffic light conditions. Three different sedans and a pick-up truck were utilized.
Journal Article

An Objective Analysis of the Effect of Tire Tread Depth on Crash Causation and Wet Road Vehicle Dynamics

2013-04-08
2013-01-0701
This paper explores tire placement with given tread depths on vehicles from two distinct perspectives. The first area explored is an analysis of crash data recently reported by the National Highway Traffic Safety Administration (NHTSA). In this report, thousands of tire-related crashes were investigated where the tread depth and inflation pressure were logged for each tire and assessments were made as to whether tire condition was a factor in the crash. The analysis of the data shows that in regards to accident causation, it is not statistically significant which axle has the deepest tread. What is significant is that a tread depth at or below 4/32″ anywhere on the vehicle leads to an increased rate of crashes. To understand the physics implied by the NHTSA data, a study was performed on how the placement of tires of various tread depths affects the steering, handling, and braking performance of a modern sport utility vehicle.
Technical Paper

Calculating Vehicle Side Structure Stiffness from Crash Test Data: Effects of Impactor Characteristics

2020-04-14
2020-01-0640
This research examines the effects of impactor characteristics on the calculated structural stiffness parameters A and B for the struck sides of late-model vehicles. This study was made possible by crash testing performed by the National Highway Traffic Safety Administration involving side impacts of the same vehicle line with both a rigid pole and with a moving deformable barrier. Twenty-nine crash test pairs were identified for 2018 model-year vehicles. Of 60 total tests, 49 were analyzed. Test data for 19 vehicles impacted in both modes resulted in A and B values considered to be valid. Classifying these 19 vehicles according to the categories defined by Siddall and Day, only Class 2 multipurpose vehicles were represented by enough vehicles (10) to search for trends within a given vehicle category. For these vehicles, more scatter in the results was observed in both A and B values for the MDB impacts compared to the pole impacts.
Technical Paper

Driver Reactions in a Vehicle with Collision Warning and Mitigation Technology

2015-04-14
2015-01-1411
Advanced Driver Assistive System (ADAS) technologies have been introduced as the automotive industry moves towards autonomous driving. One ADAS technology with the potential for substantial safety benefits is forward collision warning and mitigation (FCWM), which is designed to warn drivers of imminent front-end collisions, potentiate driver braking responses, and apply the vehicle's brakes autonomously. Although the proliferation of FCWM technologies can, in many ways, mitigate the necessity of a timely braking response by a driver in an emergency situation, how these systems affect a driver's overall ability to safely, efficiently, and comfortably operate a motor vehicle remains unclear. Exponent conducted a closed-course evaluation of drivers' reactions to an imminent forward collision event while driving an FCWM-equipped vehicle, either with or without a secondary task administered through a hands-free cell phone.
Technical Paper

Effects of Anthropometry and Passive Restraint Deployment Timing on Occupant Metrics in Moderate-Severity Offset Frontal Collisions

2024-04-09
2024-01-2749
There are established federal requirements and industry standards for frontal crash testing of motor vehicles. Consistently applied methods support reliability, repeatability, and comparability of performance metrics between tests and platforms. However, real world collisions are rarely identical to standard test protocols. This study examined the effects of occupant anthropometry and passive restraint deployment timing on occupant kinematics and biomechanical loading in a moderate-severity (approximately 30 kph delta-V) offset frontal crash scenario. An offset, front-to-rear vehicle-to-vehicle crash test was performed, and the dynamics of the vehicle experiencing the frontal collision were replicated in a series of three sled tests. Crash test and sled test vehicle kinematics were comparable. A standard or reduced-weight 50th percentile male Hybrid III ATD (H3-50M) or a standard 5th percentile female Hybrid III ATD (H3-5F) was belted in the driver’s seating position.
Technical Paper

Evaluation of Laminated Side Window Glazing Coding and Rollover Ejection Mitigation Performance Using NASS-CDS

2020-04-14
2020-01-1216
Occupant ejection has been identified as a safety problem for decades, particularly in rollover crashes. While field accident studies have repeatedly demonstrated the effectiveness of seat belts in mitigating rollover ejection and injuries, the use of laminated glass in side window positions has been suggested as a means to mitigate occupant ejection. Limited data is available on the field performance of laminated glass in preventing ejection. This study utilized 1997-2015 NASS-CDS data to investigate the reliability of the glazing coding variables in the database and determine if any conclusions can be drawn regarding the effect of different side window glazing types on occupant ejection. An initial query was run for 1997-2016 model year vehicles involved in side impacts to evaluate glazing coding within NASS-CDS.
Technical Paper

Evaluation of Occupant Kinematics during Low- to Moderate-Speed Side Impacts

2020-04-14
2020-01-1222
While nearly 50 percent of occupants in side-impact collisions are in vehicles that experience a velocity change (delta-V) below 15.0 kph (9.3 mph), full scale crash testing research at these delta-Vs is limited. Understanding occupant kinematics in response to these types of side impacts can be important to the design of side-impact safety countermeasures, as well as for evaluating potential interactions with interior vehicle structures and/or with other occupants in the vehicle. In the current study, two full-scale crash tests were performed utilizing a late-model, mid-size sedan with disabled airbags. The test vehicle was impacted by a non-deformable moving barrier on the driver side at an impact speed of 10.0 kph (6.2 mph) in the first test and then on the passenger side at an impact speed of 21.6 kph (13.4 mph) in the second test, resulting in vehicle lateral delta-Vs of 6.1 kph (3.8 mph) and 14.0 kph (8.7 mph), respectively.
Journal Article

Normal Pedal Activation in Real World Situations

2011-04-12
2011-01-0551
This study reports pedal activation forces and typical acceleration and deceleration rates during everyday driving activities. Twenty subjects of varying ages, height and weight participated in the study. Each subject was asked to drive a four-door sedan along 2.3 miles of roadway in DuPage County, Illinois. Vehicle speed, acceleration, and position were measured using a global positioning system that was synchronized with force data collected from load cells rigidly mounted on the vehicle's accelerator and brake pedals. Pedal forces and vehicle behavior were measured during common driving tasks such as, shifting the transmission into reverse, backing out of a parking spot, and, making a right hand turn from a stop sign. Our data suggests that simple vehicle dynamic tasks produced in experimental settings may not reliably reproduce vehicle and occupant behavior.
Journal Article

Rear-End Impacts - Part 1: Field and Test Data Analysis of Crash Characteristics

2022-03-29
2022-01-0859
Prior to developing or modifying the protocol of a performance evaluation test, it is important to identify field relevant conditions. The objective of this study was to assess the distribution of selected crash variables from rear crash field collisions involving modern vehicles. The number of exposed and serious-to-fatally injured non-ejected occupants was determined in 2008+ model year (MY) vehicles using the NASS-CDS and CISS databases. Selected crash variables were assessed for rear crashes, including severity (delta V), impact location, struck vehicle type, and striking objects. In addition, 15 EDRs were collected from 2017 to 2019 CISS cases involving 2008+ MY light vehicles with a rear delta V ranging from 32 to 48 km/h. Ten rear crash tests were also investigated to identify pulse characteristics in rear crashes. The tests included five vehicle-to-vehicle crash tests and five FMVSS 301R barrier tests matching the struck vehicle.
Technical Paper

Recreational Off-Highway Vehicle (ROV) Handling and Control

2012-04-16
2012-01-0239
Through testing conducted by multiple facilities, it has been observed that the class of compact two-person vehicles designed exclusively for off-road operation known as Recreational Off-Highway Vehicles (ROVs) exhibit a range of steady-state handling characteristics - including both understeer and understeer transitioning to oversteer as measured in circle-turn tests similar to those set forth in SAEJ266. This handling characteristic is different from on-road passenger cars and light trucks which, under all but heavy loading conditions, exhibit linear range and limit understeer steady-state cornering behavior. Limit understeer is considered desirable for on-road vehicles because it provides a directionally stable and generally predictable control response. In the research presented in this paper, the handling qualities, including controllability, of a ROV which was modified to have different steady-state handling characteristics ranging from understeer to oversteer is examined.
Technical Paper

Speeds of Child Cyclists

2019-04-02
2019-01-0419
Many published studies have characterized walking and running speeds of young children. However, there is a paucity of data on the cycling speeds of very young children (4 to 5 years old). The purpose of this study was to obtain an estimate of cycling speed for boys and girls both who are learning to ride bicycles (i.e., younger children who still ride with training wheels) and who have already learned to ride bicycles (i.e., slightly older children who no longer use training wheels). A sample of 32 child riders (17 boys, 15 girls; 17 four-year-olds who still ride with training wheels, 15 five-year-olds who do not) were asked to ride a short pre-defined distance at their usual speed when riding, and again at their highest speed. We found that while age and experience can differentiate riders, there were only small differences between boys’ and girls’ speeds in either age group.
Technical Paper

Steering Shaft Separation with a Collision Involved Heavy Duty Steering Gear

2018-04-03
2018-01-0524
A crash of a medium duty truck led to a study of the failure mechanism of the truck’s steering system. The truck, after being involved in a multi-vehicle vehicle collision, was found with its steering input shaft disconnected from the steering gear. The question arose whether the steering gear failure was a result of the collision, or causative to the collision. An in-depth investigation was conducted into whether forces on the vehicle due to the collision could cause the steering shaft to separate from the steering gear. Additionally, the performance of the steering gear with the adjuster nut progressively backed off was studied to determine the feedback a driver would receive if the steering gear came progressively apart. From the results of these studies, conclusions with regard to the crash causation were reached.
X