Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3D FEA Thermal Modeling with Experimentally Measured Loss Gradient of Large Format Ultra-Fast Charging Battery Module Used for EVs

2022-03-29
2022-01-0711
A large amount of heat is generated in electric vehicle battery packs during high rate charging, resulting in the need for effective cooling methods. In this paper, a prototype liquid cooled large format Lithium-ion battery module is modeled and tested. Experiments are conducted on the module, which includes 31Ah NMC/Graphite pouch battery cells sandwiched by a foam thermal pad and heat sinks on both sides. The module is instrumented with twenty T-type thermocouples to measure thermal characteristics including the cell and foam surface temperature, heat flux distribution, and the heat generation from batteries under up to 5C rate ultra-fast charging. Constant power loss tests are also performed in which battery loss can be directly measured.
Technical Paper

A DFSS Approach to Optimize the Second Row Floor Duct Using Parametric Modelling

2017-03-28
2017-01-0176
The main function of mobile air conditioning system in a vehicle is to provide the thermal comfort to the occupants sitting inside the vehicle at all environmental conditions. The function of ducts is to get the sufficient airflow from the HVAC system and distribute the airflow evenly throughout the cabin. In this paper, the focus is to optimize the rear passenger floor duct system to meet the target requirements through design for six sigma (DFSS) methodology. Computational fluid dynamics analysis (CFD) has been used extensively to optimize system performance and shorten the product development time. In this methodology, a parametric modeling of floor duct design using the factors such as crossectional area, duct length, insulation type, insulation thickness and thickness of duct were created using CATIA. L12 orthogonal design array matrix has been created and the 3D CFD analysis has been carried out individually to check the velocity and temperature.
Journal Article

A Decision Based Mobility Model for Semi and Fully Autonomous Vehicles

2020-04-14
2020-01-0747
With the emergence of intelligent ground vehicles, an objective evaluation of vehicle mobility has become an even more challenging task. Vehicle mobility refers to the ability of a ground vehicle to traverse from one point to another, preferably in an optimal way. Numerous techniques exist for evaluating the mobility of vehicles on paved roads, both quantitatively and qualitatively, however, capabilities to evaluate their off-road performance remains limited. Whereas a vehicle’s off-road mobility may be significantly enhanced with intelligence, it also introduces many new variables into the decision making process that must be considered. In this paper, we present a decision analytic framework to accomplish this task. In our approach, a vehicle’s mobility is modeled using an operator’s preferences over multiple mobility attributes of concern. We also provide a method to analyze various operating scenarios including the ability to mitigate uncertainty in the vehicles inputs.
Technical Paper

A Dynamic Programming Algorithm for HEV Powertrains Using Battery Power as State Variable

2020-04-14
2020-01-0271
One of the first steps in powertrain design is to assess its best performance and consumption in a virtual phase. Regarding hybrid electric vehicles (HEVs), it is important to define the best mode profile through a cycle in order to maximize fuel economy. To assist in that task, several off-line optimization algorithms were developed, with Dynamic Programming (DP) being the most common one. The DP algorithm generates the control actions that will result in the most optimal fuel economy of the powertrain for a known driving cycle. Although this method results in the global optimum behavior, the DP tool comes with a high computational cost. The charge-sustaining requirement and the necessity of capturing extremely small variations in the battery state of charge (SOC) makes this state vector an enormous variable. As things move fast in the industry, a rapid tool with the same performance is required.
Technical Paper

A Fresh Perspective on Hypoid Duty Cycle Severity

2021-04-06
2021-01-0707
A new method is demonstrated for rating the “severity” of a hypoid gear set duty cycle (revolutions at torque) using the intercept of T-N curve to support gearset selection and sizing decision across vehicle programs. Historically, it has been customary to compute a cumulative damage (using Miner's Rule) for a rotating component duty cycle given a T-N curve slope and intercept for the component and failure mode of interest. The slope and intercept of a T-N curve is often proprietary to the axle manufacturer and are not published. Therefore, for upfront sizing and selection purposes representative T-N properties are used to assess relative component duty cycle severity via cumulative damage (non-dimensional quantity). A similar duty cycle severity rating can also be achieved by computing the intercept of the T-N curve instead of cumulative damage, which is the focus of this study.
Technical Paper

A Linear Quadratic Integral Approach to the Profiling of Engine Speed for Synchronization

2024-04-09
2024-01-2139
During driving conditions, when it is needed to transition from Electric Vehicle (EV) to Hybrid Vehicle operation, synchronization of the engine with the shaft and transmission is essential to enable clutch engagement and, subsequently, providing engine power to the wheels. Challenges arise when the engine must generate power to move itself and cannot rely on electric motors for precision. Cost-effective hybrid vehicle propulsion architectures which utilize small 12V belt-starter generators (BSGs) to initiate engine activation are inherently affected. In these situations, a speed profile that balance rapid response and control effort while considering system limitations to mitigate undesirable overshoots and delays, is required. This paper presents a Linear Quadratic Integral (LQI) approach to formulate a speed reference profile that ensures optimal engine behavior.
Technical Paper

A New Weight Reduction Lightening Holes Development Approach Based on Frame Durability Fatigue Performance

2017-03-28
2017-01-1348
For a light duty truck, the frame is a structural system and it must go through a series of proving ground events to meet fatigue performance requirement. Nowadays, in order to meet stringent CAFE standards, auto manufacturers are seeking to keep the vehicle weight as light as possible. The weight reduction on the frame is a challenging task as it still needs to maintain the strength, safety, and durability fatigue performance. CAE fatigue simulation is widely used in frame design before the physical proving ground tests are performed. A typical frame durability fatigue analysis includes both the base metal fatigue analysis and seam weld fatigue analysis. Usually the gauges of the frame components are dictated by the seam weld fatigue performance so opportunities for weight reduction may exist in areas away from the welds. One method to reduce frame weight is to cut lightening holes in the areas that have little impact on the frame fatigue performance.
Journal Article

A Nonlinear Model Predictive Control Strategy with a Disturbance Observer for Spark Ignition Engines with External EGR

2017-03-28
2017-01-0608
This research proposes a control system for Spark Ignition (SI) engines with external Exhaust Gas Recirculation (EGR) based on model predictive control and a disturbance observer. The proposed Economic Nonlinear Model Predictive Controller (E-NMPC) tries to minimize fuel consumption for a number of engine cycles into the future given an Indicated Mean Effective Pressure (IMEP) tracking reference and abnormal combustion constraints like knock and combustion variability. A nonlinear optimization problem is formulated and solved in real time using Sequential Quadratic Programming (SQP) to obtain the desired control actuator set-points. An Extended Kalman Filter (EKF) based observer is applied to estimate engine states, combining both air path and cylinder dynamics. The EKF engine state(s) observer is augmented with disturbance estimation to account for modeling errors and/or sensor/actuator offset.
Technical Paper

A Novel Kalman Filter Based Road Grade Estimation Method

2020-04-14
2020-01-0563
This paper presents a novel Kalman filter based road grade estimation method using measurements from an accelerometer, a gyroscope and a velocity sensor. The accelerometer measures the longitudinal proper acceleration of the vehicle, and the accelerometer measurement is almost drift free but it is heavily corrupted by the accelerometer noise. The gyroscope measures the pitch rate of the vehicle, and the gyroscope measurement is quite clean but it is substantially disturbed by the gyroscope bias. The velocity sensor measures the longitudinal velocity of the vehicle, and the velocity sensor measurement is also considerably corrupted by the measurement noise. The developed Kalman filter based estimation method uses the models of the sensors and their outputs, and fuses the sensor measurements to optimally estimate the road grade. The simulation results show that the developed method is very effective in producing an accurate road grade estimate.
Technical Paper

A Physics Based Thermal Management Model for PHEV Battery Systems

2018-04-03
2018-01-0080
The demand for vehicles with electrified powertrain systems is increasing due to government regulations on fuel economy. The battery systems in a PHEV (Plug-in Hybrid-electric Vehicle) have achieved tremendous efficiency over past few years. The system has become more delicate and complex in architecture which requires sophisticated thermal management. Primary reason behind this is to ensure effective cooling of the cells. Hence the current work has emphasized on developing a “Physics based” thermal management modeling framework for a typical battery system. In this work the thermal energy conservation has been analyzed thoroughly in order to develop necessary governing equations for the system. Since cooling is merely a complex process in HEV battery systems, the underlying mechanics has been investigated using the current model. The framework was kept generic so that it can be applied with various architectures. In this paper the process has been standardized in this context.
Technical Paper

A Robust Cargo Box Structure Development Using DFSS Methodology

2020-04-14
2020-01-0601
A cargo box is a key structure in a pickup truck which is used to hold various items. Therefore, a cargo box must be durable and robust under different ballast conditions when subjected to road load inputs. This paper discusses a Design for Six Sigma (DFSS) approach to improve the durability of cargo box panel in its early development phase. Traditional methods and best practices resulted in multiple iterations without an obvious solution. Hence, DFSS tools were proposed to find a robust and optimum solution. Key control factors/design parameters were identified, and L18 Orthogonal Array was chosen to optimize design using CAE tools. The optimum design selected was the one with the minimum stress level and the least stress variation. This design was confirmed to have significant improvement and robustness compared to the initial design. DFSS identified load paths which helped teams finally come up with integrated shear plate to resolve the durability concern.
Technical Paper

A Sensitivity Study on Inertance Frequency Response Function through Non-Parametric Variability Approach

2017-03-28
2017-01-0445
In recent years, there is increasing demand for every CAE engineer on their confidence level of the virtual simulation results due to the upfront robust design requirement during early stage of an automotive product development. Apart from vehicle feel factor NVH characteristics, there are certain vibration target requirements at system or component level which need to be addressed during design stage itself in order to achieve the desired functioning during vehicle operating conditions. Vehicle passive safety system is one which primarily consists of acceleration sensors, control module and air-bag deployment system. Control module’s decision is based on accelerometer sensor signals so that its mounting locations should meet the sufficient inertance or dynamic stiffness performance in order to avoid distortion in signals due to its structural resonances.
Journal Article

A Simulation Tool for Calculation of Engine Thermal Boundary Conditions

2022-03-29
2022-01-0597
Reducing emissions and the carbon footprint of our society have become imperatives requiring the automotive industry to adapt and develop technologies to strive for a cleaner sustainable transport system and for sustainable economic prosperity. Electrified hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV) and range extender powertrains provide potential solutions for reducing emissions, but they present challenges in terms of thermal management. A key requirement for meeting these challenges is accurately to predict the thermal loading and temperatures of an internal combustion engine (ICE) quickly under multiple full-load and part-load conditions. Computational Fluid Dynamics (CFD) and thermal survey database methods are used to derive thermal loading of the engine structure and are well understood but typically only used at full-load conditions.
Technical Paper

A Simulation-Based Approach to Incorporate Uncertainty in Reliability Growth Planning (RGP)

2020-04-14
2020-01-0742
The development of complex engineering systems often encounters various challenges in terms of meeting New Product Development (NPD) assigned budget, launch time, and system performance goals. Most of the NPD processes have been experiencing challenges to meet these goals within an increasingly competitive global market environment. These challenges become more complicated to manage when the development process is long with different sources of uncertainty. Despite decades of industrial experience and academic research efforts in managing NPD processes, it is observed that designing and developing increasingly complex systems, e.g., automotive, is still subjected to significant cost overrun, schedule delays, and functional issues during early design stages. To provide a Reliability Growth Planning (RGP) model, several inputs are required, e.g., the initial reliability estimation, the reliability goal, test recourses, and the duration of the design or test period.
Journal Article

A Stress-Based Non-Proportionality Parameter for Considering the Resistance of Slip Systems of Shear Failure Mode Materials

2016-04-11
2016-01-9081
Multiaxial loading on mechanical products is very common in the automotive industry, and how to design and analyze these products for durability becomes an important, urgent task for the engineering community. Due to the complex nature of the fatigue damage mechanism for a product under multiaxial state of stresses/strains which are dependent upon the modes of loading, materials, and life, modeling this behavior has always been a challenging task for fatigue scientists and engineers around the world. As a result, many multiaxial fatigue theories have been developed. Among all the theories, an existing equivalent stress theory is considered for use for the automotive components that are typically designed to prevent Case B cracks in the high cycle fatigue regime.
Technical Paper

A Study of Influence of Suspension on Driveline Torque and Evaluation of Vehicle Anti-Squat/Dive Characteristics Using a Planar Vehicle Dynamics Model

2021-04-06
2021-01-0693
Simplified vehicle dynamics models used to study the driveline durability are typically limited to the longitudinal dynamics and do not account for vertical and pitch dynamics. The influence of suspension on the vehicle ride and handling characteristics is studied extensively in the literature but its impact on the driveline torques is often not considered. In this paper, an effort is made to investigate the influence of suspension compliance on the driveline torque using a planar (longitudinal, pitch and vertical) vehicle dynamics model. An AWD vehicle is studied to understand its impact on the torque levels of both axles (primary and secondary). Subsequently the planar dynamics is explored in the context of anti-squat/anti-dive suspension. The primary focus of the paper is to predict the driveline torque.
Technical Paper

A Study on Robust Air Induction Snorkel Volume Velocity Prediction Using DFSS Approach

2016-04-05
2016-01-0480
The noise radiated from the snorkel of an air induction system (AIS) can be a major noise source to the vehicle interior noise. This noise source is typically quantified as the snorkel volume velocity which is directly related to vehicle interior noise through the vehicle noise transfer function. It is important to predict the snorkel volume velocity robustly at the early design stage for the AIS development. Design For Six Sigma (DFSS) is an engineering approach that supports the new product development process. The IDDOV (Identify-Define-Develop-Optimize-Verify) method is a DFSS approach which can be used for creating innovative, low cost and trouble free products on significant short schedules. In this paper, an IDD project which is one type of DFSS project using IDDOV method is presented on developing a robust simulation process to predict the AIS snorkel volume velocity. First, the IDDOV method is overviewed and the innovative tools in each phase of IDDOV are introduced.
Technical Paper

A Study on the Effect of Different Glasses and Its Properties on Vehicle Cabin during Soaking at Hot Ambient Conditions Using 1D Simulation

2020-04-14
2020-01-0956
Increase in the atmospheric temperature across the globe during summer, increases the heat load in the vehicle cabin, creating a huge thermal discomfort for the passengers. There are two scenarios where these adverse conditions can be a problem during the summer. Firstly, while driving the vehicle in traffic conditions and secondly, when the vehicle is parked under the sun. When the vehicle is exposed to the radiation from the sun for a period, the cabin temperature can reach alarming levels, which may have serious discomfort and health effects on the people entering the vehicle. Although there are options of remote switching on of air conditioners, they are restricted to vehicles having an automatic transmission and availability of the mobile network. So, it is important to explore the possible options which can be used for restricting the external heat load to the cabin.
Technical Paper

A Technique for Cargo Box Tailgate CAE Fatigue Life Predictions Loaded with Inertial Forces and Moments

2015-04-14
2015-01-0532
This paper describes a CAE fatigue life prediction technique for a tailgate on pickup truck cargo box with inertial forces and moments applied at mass center of the tailgate as input loads. The inertial forces and moments are calculated from the accelerations measured at the corners of the tailgate as the truck is being driven over a durability schedule at the test proving grounds. All the dynamic responses of the tailgate on cargo box, including any dynamic interactions at the pivot joints between the tailgate and box sides, are captured in the acquired data and also in the inertial forces and moments computed at the mass center. Correspondingly, all the dynamic responses are included in the CAE fatigue life predictions. The dynamic interactions at the pivot joints are simulated by using two identical CAE models, one with lateral translational constraint applied at the left pivot only and the other at the right pivot only.
Journal Article

Accelerated Sizing of a Power Split Electrified Powertrain

2020-04-14
2020-01-0843
Component sizing generally represents a demanding and time-consuming task in the development process of electrified powertrains. A couple of processes are available in literature for sizing the hybrid electric vehicle (HEV) components. These processes employ either time-consuming global optimization techniques like dynamic programming (DP) or near-optimal techniques that require iterative and uncertain tuning of evaluation parameters like the Pontryagin’s minimum principle (PMP). Recently, a novel near-optimal technique has been devised for rapidly predicting the optimal fuel economy benchmark of design options for electrified powertrains. This method, named slope-weighted energy-based rapid control analysis (SERCA), has been demonstrated producing results comparable to DP, while limiting the associated computational time by near two orders of magnitude.
X