Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Technical Paper

Application of a Laser Vibrometer for Automotive Aeroacoustic Analysis

1997-05-20
972065
The Scanning Laser Vibrometer can make full field, high resolution measurements of the normal surface velocity of automotive door glass and sheet metal vibrations. These properties make the vibrometer a very useful tool for locating compliant and noisy areas on the surface of a vehicle, generated by exterior wind noise. An advantage of the vibrometer is that it measures the vibration of the surface, capturing the transfer of noise through the surface, rather than simply measuring the exterior wind noise. Methods of experimental setup, testing, and problem analysis on outside rear view mirror/A-pillar/Sideglass configurations and body panel vibrations are discussed in the paper.
Technical Paper

Controlling Panel Noise and Vibration Using Non-Contacting Test Methodologies

1993-05-01
931339
Non-contacting test methodology studies of automotive body components have become a very useful, high resolution and sensitive test technique to engineering personnel. Continuous wave laser holometry, computer aided holometry (CAH), pulsed laser holometry and a scanning laser system were used to image vibration patterns. These methods were selected because of improved data turn-around time in the test development process while having no mass-loading effects on the sheet metal panels. An analysis of the vehicle body structure was conducted to improve the interior body structure sound quality and to reduce road noise presence. An interrogation of the interior noise spectrum identified critical frequencies affecting vehicle NVH. This paper addresses the results of using the aforementioned non-contacting test methods to reduce panel responses by developing an optimum rib section and pattern, and the addition of adhered stiffening materials.
Technical Paper

Customer Based Holometric Analysis

1995-05-01
951308
This paper describes a test-based process used to identify structural characteristics of a vehicle windshield wiper system that contribute to customer impression of the sound. The method of paired comparisons determined which wiper system sounds customers preferred. Annoyance ratings of sound components then identified contributors to customer preference. Wiper motor noise was identified as the major annoyance factor affecting system sound quality. This information guided a study of the structures responsible for radiated motor noise. Laser based test methods were used to interrogate the structures clearly identifying transmission paths into the surrounding structure. Paths were then modified reducing structure-borne motor sound as measured with acoustic retests. Thus, a logical technique for hardware testing and modification guided by customer perceptions is presented allowing efforts to be focussed on the most critical aspects of vehicle sound quality.
Technical Paper

Laser Obstacle Detector and Warning System

1970-02-01
700084
A rear obstacle detector and warning unit was designed to detect the presence of an object in the rear blind spot behind a vehicle and warn the operator if the possibility of backing over the object exists. A semiconductor infrared laser and a semiconductor detector, mounted on a vehicle behind the rear axle with a unique optical lens system proved capable of detecting small objects up to 10 ft directly behind the vehicle. The unit performance verified the ability to design an obstacle detection system with a sharply defined field of view using infrared technology.
Technical Paper

Laser Ride Height Measurement/Calibration System

1995-02-01
950025
The Laser Ride Height Measurement and Calibration System measures and calibrates the ride height of a vehicle equipped with electronic suspension. The existing process of setting ride height is labor intensive and imprecise leading to vehicles that lean, have improper attitude, and suffer from alignment drift and pull. The proposed Machine and Process will impart the correct appearance and ride height to every vehicle which undergoes this test. A similar process can be used to measure the ride height of vehicles equipped with passive springs.
Technical Paper

Measurement of Aeroacoustically Induced Door Glass Vibrations Using a Laser Vibrometer

1995-05-01
951331
Work has been performed to study side glass vibrations of a typical automobile using a scanning laser vibrometer. The objective of this work was to achieve better understanding of the source and path mechanisms for aeroacoustically generated wind noise. As a tool for measuring aeroacoustically generated vibrations, the laser vibrometer presents many advantages over traditional methods. These advantages, discussed in this paper, include rapid setup, full field imaging, high spacial resolution, non-contact operation, and wide dynamic and frequency ranges.
Technical Paper

Nondestructive Evaluation of Spot Weld Integrity/Quality: Method Comparison

1999-03-01
1999-01-0944
This paper benchmarks some methods of nondestructive testing for zero and high mileage spot weld quality/integrity and degradation evaluation (pin holes, voids, cracks, fatigue, corrosion, etc.). The methods include X-ray radiography, ultrasonic imaging, ultrasonic pulse/ echo, pulsed infrared or thermography, and laser/TV holographic interferometry imaging. The advantages and limitations of each method are provided with descriptive principles and real test examples. It is found that X-ray radiography combined with ultrasonic echo technique is the most favorable one considering time and cost for the current zero and high mileage spot weld evaluation.
Technical Paper

Use of Experimentally Measured In-Cylinder Flow Field Data at IVC as Initial Conditions to CFD Simulations of Compression Stroke in I.C. Engines - A Feasibility Study

1994-03-01
940280
The feasibility of using experimentally determined flow fields at intake valve closing, IVC, as initial conditions for computing the in-cylinder flow dynamics during the compression stroke is demonstrated by means of a computer simulation of the overall approach. A commercial CFD code, STAR-CD, was used for this purpose. The study involved two steps. First, in order to establish a basis for comparison, the in-cylinder flow field throughout the intake and compression strokes, from intake valve opening, IVO, to top dead center, TDC, was computed for a simple engine geometry. Second, experimental initial conditions were simulated by randomly selecting and perturbing a set of velocity vectors from the computed flow field at IVC.
X