Refine Your Search

Topic

Author

Search Results

Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

2005 Ford GT - Melding the Past and the Future

2004-03-08
2004-01-1251
The 2005 Ford GT high performance sports car was designed and built in keeping with the heritage of the 1960's LeMans winning GT40 while maintaining the image of the 2002 GT40 concept vehicle. This paper reviews the technical challenges in designing and building a super car in 12 months while meeting customer expectations in performance, styling, quality and regulatory requirements. A team of dedicated and performance inspired engineers and technical specialists from Ford Motor Company Special Vehicle Teams, Research and Advanced Engineering, Mayflower Vehicle Systems, Roush Industries, Lear, and Saleen Special Vehicles was assembled and tasked with designing the production 2005 vehicle in record time.
Technical Paper

A Comparative Study of the Fatigue Behavior of Spot Welded and Mechanically Fastened Aluminum Joints

1995-02-01
950710
The cyclic behavior of single overlap aluminum joints joined through a number of different methods has been investigated using Alcan 5754-O, an alloy that potentially could be used in structural applications. Overlap shear tests of spot welded, clinched and riveted joints are compared on the basis of their fatigue performance. The fatigue response of the spot welded joint was the baseline to which the other fasteners were compared. Test results showed an improvement of approximately 25% for both the mechanical clinch joints and aluminum rivets in fatigue strength at 106 cycles. The most significant improvement in fatigue strength of 100% was found for the self piercing rivets at 106 cycles. The failure behavior of the various joining methods is discussed as well as the surface appearance.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Technical Paper

A Micromachined Silicon Mass-Air-Flow Sensor

1992-02-01
920473
This paper describes the fabrication and operation of a low-cost, monolithic silicon mass-air-flow sensor (MAFS) developed for automotive applications. The device is a hot wire anemometer made of two thin single-crystal silicon beams, one being the heated element and the other serving as a temperature reference. Temperature compensation techniques and the design tradeoffs to maximize performance while ensuring durability in the harsh automotive environment are discussed.
Technical Paper

A New 5MPH Bumper System

1994-11-01
942277
A new bumper system which provides 8 kph (5 mph) vehicle protection with superior quality, outstanding durability and high value is in production. The system includes five new technologies: Hot stamped, ultra high strength front beam, 970 N/mm2 (160 KSI) which also is the #1 body structure crossmember. Ultra high strength roll formed rear beam 1150 N/mm2 (190 KSI). polypropylene foam isolators designed for controlled energy management Thermoplastic olefin (TPO), injection molded fascias Two component urethane paint for long term color, gloss and scratch resistance. This bumper system, installed on over 100,000 vehicles so far, meets both MPV and passenger car 8 kph standards. Consumer and insurance industry trends indicate increasing demand for Multi Purpose Vehicle (MPV) bumper systems which meet 8 kph criteria. The major competitors in the MPV market (Aerostar, Grand Caravan, Toyota Previa, GM APV's, and Mazda MPV) have either 0 kph or at best 4 kph systems.
Technical Paper

A New Method Development to Predict Brake Squeal Occurrence

1994-11-01
942258
A new method to predict brake squeal occurrence was developed by MSC under contract to Ford Motor Company. The results indicate that the stability characteristics of this disc brake assembly are governed mainly by the frictional properties between the pads and rotor. The stability is achieved when the friction coefficient of the pads is decreasing as the contact force increases. Based on the results, a stable brake system can be obtained without changing the brake structure by incorporating the appropriate frictional coefficient in the brake system. The method developed here can be also used as a tool to test the quality of any brake design in the early design stage.
Technical Paper

A Novel Approach to Statistical Energy Analysis Model Validation

1995-05-01
951328
Statistical Energy Analysis (SEA) is a tool for estimating the response of complex dynamic systems at high modal density. This tool is seeing ever wider application in a range of industries, including aerospace industry, marine industry, and building trades. The automotive industry is beginning to explore the application of SEA to high frequency vehicle acoustic design. The SEA model of vibrational power transmission has a direct analogy to thermal power transmission (diffusion). As thermal power flow is proportional to temperature difference, vibrational power flow is proportional to modal energy difference. In this paper the thermal analogy is exploited to visualize the SEA results. This is accomplished by color coding a finite element representation of the structure. In this paper, the thermal analogy is used to correlate test data with SEA model results. This is accomplished by constructing a test based modal power thermogram.
Technical Paper

A Numerically Stable Computer Model for Sheet Metal Forming Analysis by 2D Membrane Theory

1993-03-01
930518
In this paper, we introduce a numerically stable 2D computer model for sheet metal forming analysis based on the membrane theory. It simulates both axisymmetrical and plane strain cases with various restraining and friction conditions. We implemented a more realistic material model that accounts for cyclic loading and unloading. Also, the difficult frictional force reversal problem has been overcome. A simulation package released within Ford Motor Company has proven robust and accurate for applications to industrial cases.
Technical Paper

Aluminum Rail Rivet and Steel Rail Weld DOE and CAE Studies for NVH

2001-04-30
2001-01-1608
Vehicle body with aluminum riveted construction instead of steel welded one will be a big challenge to NVH. In this paper, aluminum and steel rails with the dimensions similar to the rear rail portion of a typical mid-size sedan were fabricated. Rivets were used to assemble the aluminum rails while welds were used to assemble the steel rails. Adhesive, rivet/weld spacing, and rivet/weld location were the three major factors to be studied and their impact on NVH were investigated. The DOE matrix was developed using these three major factors. Modal tests were performed on those rails according to the DOE matrix. The FEA models corresponding to the hardware were built. CAE modal analysis were performed and compared with test data. The current in-house CAE modeling techniques for spot weld and adhesive were evaluated and validated with test data.
Technical Paper

An Approach to Improved Electroplated Parts Quality

1983-02-01
830499
The long term visual appearance of exterior chrome-plated parts is highly dependent on part design and supplier performance. The use of numerous complex designs coupled with the pressures of competition has caused a statistically high percentage of parts to be manufactured which do not fully meet customer expectations. A coordinated approach to improve supplier performance and simplification of part designs was required. A task force was established to address these issues in 1980 and desirable results were achieved.
Technical Paper

An Automotive Application of Surface Mounted Device Technology

1985-02-01
850139
The paper describes the application of surface mounted technology to cost reduce and downsize an existing electronic control module. Ford Motor Company's Lamp Outage Module was chosen to demonstrate the advantages of this technology. The application of this new manufacturing technology to an automotive product required careful printed circuit board design and component selection. The design considerations, test plan and reliability results are presented. The test results indicate that with proper component selection performance can be obtained that surpasses the existing manufacturing process. This technology does promise vehicle cost reductions as it is applied to other automotive products.
Technical Paper

An Evaluation of the SAE Recommended Design Changes to the Hybrid III Dummy Hip Joint

1995-02-01
950665
The SAE Large Male and Small Female Dummy Task Group has recommended a change to the Hybrid III dummy hip joint. This change was made because of a non-biofidelic interference in the current design that can influence chest accelerations. The modifications include a new femur casting shaft design and the addition of an elastomeric stop to the top of the casting. Static testing and Hyge sled tests were done to evaluate the modifications. Based on the results, the new design satisfied the requirements set by the SAE task group and reduced the influence of hip joint characteristics on chest accelerations.
Journal Article

An Investigation of the Effects of Cast Skin on the Mechanical Properties of an AM60 Die-Cast Magnesium Alloy

2015-04-14
2015-01-0510
Magnesium die-cast alloys are known to have a layered microstructure composed of: (1) An outer skin layer characterized by a refined microstructure that is relatively defect-free; and (2) A “core” (interior) layer with a coarser microstructure having a higher concentration of features such as porosity and externally solidified grains (ESGs). Because of the difference in microstructural features, it has been long suggested that removal of the surface layer by machining could result in reduced mechanical properties in tested tensile samples. To examine the influence of the skin layer on the mechanical properties, a series of round tensile bars of varying diameters were die-cast in a specially-designed mold using the AM60 Mg alloy. A select number of the samples were machined to different final diameters. Subsequently, all of the samples (as-cast as well as machined) were tested in tension.
Technical Paper

An Ultra-Light Thin Sliding Door Design - A Multi-Product Multi-Material Solution

2002-03-04
2002-01-0391
Sliding door designs are applied to rear side doors on vans and other large vehicles with a trend towards dual sliding doors with power operation. It is beneficial for the vehicle user to reduce the weight of and space occupied by these doors. Alcoa, in conjunction with Ford, has developed a multi-product, multi-material-based solution, which significantly reduces the cost of an aluminum sliding door and provides both consumer delight and stamping-assembly plant benefits. The design was successfully demonstrated through a concept readiness/technology demonstration program.
Technical Paper

An Ultrasonic Technique for Measuring the Elastic Constants of Small Samples

1995-02-01
950897
Using instrumentation designed for the ultrasonic measurement of thickness, a technique has been devised for measuring the isotropic elastic constants of small samples, i. e., samples 1 mm in thickness and a minimum of 5 mm in other dimensions. Young's modulus, the shear modulus and Poisson's ratio are calculated from measurements of density and ultrasonic shear and longitudinal wave velocities. Samples of valve train materials, including chill cast iron, low alloy steel, tool steel, stainless steel, a nickel-base superalloy, and a powder metal alloy were machined from components and analyzed. The magnitude of the measured values of the elastic constants are reasonable when compared with published values. The measurement error on all the constants is estimated to be less than 1%. Moduli determined by this method can be used in finite element analyses to improve designs.
Technical Paper

Analysis of Instabilities and Power Flow in Brake Systems with Coupled Rotor Modes

2001-04-30
2001-01-1602
Recent investigations by others have indicated that the dynamic response of automotive brake rotors in the squeal frequency range involves the classic flexural modes as well as in-plane motion. While the latter set creates primarily in-plane displacements, there is coupling to transverse displacements that might produce vibrational instabilities. This question is investigated here by analyzing a modal model that includes two modes of the rotor and two modes of the pad and caliper assembly. Coupling between in-plane and transverse displacements is explicitly controlled. Results from this model indicate that the coupling does create vibrational instabilities. The instabilities, whose frequencies are in the squeal range, are characterized by power flow through the transverse motion of the rotor.
Technical Paper

Benefit of Structural Adhesives in Full Car Crash Applications

2014-04-01
2014-01-0811
Structural adhesives are widely used across the automotive industry for several reasons like scale-up of structural performance and enabling multi-material and lightweight designs. Development engineers know in general about the effects of adding adhesive to a spot-welded structure, but they want to quantify the benefit of adding adhesives on weight reduction or structural performance. A very efficient way is to do that by applying analytical tools. But, in most of the relevant non-linear load cases the classical lightweight theory can only help to get a basic understanding of the mechanics. For more complex load cases like full car crash simulations, the Finite Element Method (FEM) with explicit time integration is being applied to the vehicle development process. In order to understand the benefit of adding adhesives to a body structure upfront, new FEM simulation tools need to be established, which must be predictive and efficient.
Technical Paper

Bolt-Load Retention Behavior of Die-Cast AZ91D and AE42 Magnesium

1998-02-23
980090
The effect of temperature and preload on the bolt load retention (BLR) behavior of AZ91D and AE42 magnesium die castings was investigated. The results were compared to those of 380 aluminum die castings. Test temperatures from 125 to 175°C and preloads from 7 to 28 kN were investigated. The loss of preload for AZ91D was more sensitive to temperature than that observed for AE42, especially at low preloads. In general, retained bolt-load was lowest in AZ91D. All test assemblies were preloaded at room temperature and load levels increased when the assemblies reached test temperature. The load-increase was dependent on the preload level, test temperature, alloy, and results from thermal expansion mismatch between the steel bolt and the magnesium alloy components, mitigated by the onset of primary creep. Thermal exposure (aging) of AZ91D at 150°C improved BLR behavior.
Technical Paper

Bolt-Load Retention and Creep of Die-Cast Magnesium Alloys

1997-02-24
970325
New high-temperature Mg alloys are being considered to replace 380 Al in transmission cases, wherein bolt-load retention, and creep, is of prime concern. One of these alloys is die cast AE42, which has much better creep properties than does AZ91D but is still not as creep resistant as 380 Al. It is thus important to investigate bolt-load retention and creep of AE42 as an initial step in assessing its suitability as a material for transmission housings. To that end, the bolt-load retention behavior of die-cast AE42, AZ91D and 380 Al have been examined using standard M10 bolts specially instrumented with stable high-temperature strain gages. The bolt-load retention test pieces were die cast in geometries approximating the flange and boss regions in typical bolted joints. Bolt-load retention properties were examined as a function of time (at least 100 hours), temperature (150 and 175 °C) and initial bolt preload (14 to 34 kN).
X