Refine Your Search

Topic

Author

Search Results

Technical Paper

50,000 Mile Vehicle Road Test of Three-Way and NOx Reduction Catalyst Systems

1978-02-01
780608
The performance of three way and NOx catalysts was evaluated on vehicles utilizing non-feedback fuel control and electronic feedback fuel control. The vehicles accumulated 80,450 km (50,000 miles) using fuels representing the extremes in hydrogen-carbon ratio available for commercial use. Feedback carburetion compared to non-feedback carburetion improved highway fuel economy by about 0.4 km/l (1 mpg) and reduced deterioration of NOx with mileage accumulation. NOx emissions were higher with the low H/C fuel in the three way catalyst system; feedback reduced the fuel effect on NOx in these cars by improving conversion efficiency with the low H/C fuel. Feedback had no measureable effect on HC and CO catalyst efficiency. Hydrocarbon emissions were lower with the low H/C fuel in all cars. Unleaded gasoline octane improver, MMT, at 0.015g Mn/l (0.06 g/gal) increased tailpipe hydrocarbon emissions by 0.05 g/km (0.08 g/mile).
Journal Article

A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine

2012-09-10
2012-01-1695
Two oxygenated fuels were evaluated on a single-cylinder diesel engine and compared to three hydrocarbon diesel fuels. The oxygenated fuels included canola biodiesel (canola methyl esters, CME) and CME blended with dibutyl succinate (DBS), both of which are or have the potential to be bio-derived. DBS was added to improve the cold flow properties, but also reduced the cetane number and net heating value of the resulting blend. A 60-40 blend of the two (60% vol CME and 40% vol DBS) provided desirable cold flow benefits while staying above the U.S. minimum cetane number requirement. Contrary to prior vehicle test results and numerous literature reports, single-cylinder engine testing of both CME and the 60-40 blend showed no statistically discernable change in NOx emissions relative to diesel fuel, but only when constant intake oxygen was maintained.
Technical Paper

A Diesel Lean Nox Trap Model for Control Strategy Verification

2004-03-08
2004-01-0526
Lean NOx traps are considered as a possible means to reduce diesel powertrain tail pipe NOx emissions to future stringent limits. Several publications have proposed models for lean NOx traps [1, 2, 3 and 4]. This paper focuses on a lean NOx trap model that can be used for the verification of control strategies before these strategies are implemented in target microprocessors. Strategy verification in a simulation environment is a crucial tool for reducing control strategy development and implementation time.
Technical Paper

A LNT+SCR System for Treating the NOx Emissions from a Diesel Engine

2006-04-03
2006-01-0210
An aftertreatment system involving a LNT followed by a SCR catalyst is proposed for treating the NOx emissions from a diesel engine. NH3 (or urea) is injected between the LNT and the SCR. The SCR is used exclusively below 400°C due to its high NOx activity at low temperatures and due to its ability to store and release NH3 below 400°C, which helps to minimize NH3 and NOx slip. Above 400°C, where the NH3 storage capacity of the SCR falls to low levels, the LNT is used to store the NOx. A potassium-based LNT is utilized due to its high temperature NOx storage capability. Periodically, hydrocarbons are oxidized on the LNT under net lean conditions to promote the thermal release of the NOx. NH3 is injected simultaneously to reduce the released NOx over the SCR. The majority of the hydrocarbons are oxidized on the front portion of the LNT, resulting in the rapid release of stored NOx from that portion of the LNT.
Technical Paper

A NOx Reduction Solution for Retrofit Applications: A Simple Urea SCR Technology

2005-04-11
2005-01-1857
This paper presents the development and performance of a Selective Catalytic Reduction (SCR) aftertreatment system designed for diesel retrofit applications. It has been proven that Urea SCR represents a convenient and very efficient solution for NOx reduction that can be used for stationary and mobile powerplants with NOx reduction efficiencies that can exceed 95%. The cooperative efforts between ServoTech Engineering, Ford Motor Company, KleenAir Systems, Tenneco, and the City of Dearborn have led to the development of a simple aftertreatment system for NOx reduction. This system consists of a catalyzed diesel particulate filter (CDPF), a SCR catalyst system, and a diesel oxidation catalyst. As part of the system, an effective and compact air-assisted dosing unit developed by ServoTech Engineering in collaboration with Ford Motor Company was used for effective urea delivery and atomization.
Journal Article

A New Catalyzed HC Trap Technology that Enhances the Conversion of Gasoline Fuel Cold-Start Emissions

2018-04-03
2018-01-0938
Passive in-line catalyzed hydrocarbon (HC) traps have been used by some manufacturers in the automotive industry to reduce regulated tailpipe (TP) emissions of non-methane organic gas (NMOG) during engine cold-start conditions. However, most NMOG molecules produced during gasoline combustion are only weakly adsorbed via physisorption onto the zeolites typically used in a HC trap. As a consequence, NMOG desorption occurs at low temperatures resulting in the use of very high platinum group metal (PGM) loadings in an effort to combust NMOG before it escapes from a HC trap. In the current study, a 2.0 L direct-injection (DI) Ford Focus running on gasoline fuel was evaluated with full useful life aftertreatment where the underbody converter was either a three-way catalyst (TWC) or a HC trap. A new HC trap technology developed by Ford and Umicore demonstrated reduced TP NMOG emissions of 50% over the TWC-only system without any increase in oxides of oxygen (NOx) emissions.
Technical Paper

A Phenomenological Control Oriented Lean NOx Trap Model

2003-03-03
2003-01-1164
Lean NOx Trap (LNT) is an aftertreatment device typically used to reduce oxides of nitrogen (NOx) emissions for a lean burn engine. NOx is stored in the LNT during the lean operation of an engine. When the air-fuel ratio becomes rich, the stored NOx is released and catalytically reduced by the reductants such as CO, H2 and HC. Tailpipe NOx emissions can be significantly reduced by properly modulating the lean (storage) and rich (purge) periods. A control-oriented lumped parameter model is presented in this paper. The model captures the key steady state and transient characteristics of an LNT and includes the effects of the important engine operating parameters. The model can be used for system performance evaluation and control strategy development.
Technical Paper

Advanced Predictive Diesel Combustion Simulation Using Turbulence Model and Stochastic Reactor Model

2017-03-28
2017-01-0516
Today numerical models are a major part of the diesel engine development. They are applied during several stages of the development process to perform extensive parameter studies and to investigate flow and combustion phenomena in detail. The models are divided by complexity and computational costs since one has to decide what the best choice for the task is. 0D models are suitable for problems with large parameter spaces and multiple operating points, e.g. engine map simulation and parameter sweeps. Therefore, it is necessary to incorporate physical models to improve the predictive capability of these models. This work focuses on turbulence and mixing modeling within a 0D direct injection stochastic reactor model. The model is based on a probability density function approach and incorporates submodels for direct fuel injection, vaporization, heat transfer, turbulent mixing and detailed chemistry.
Technical Paper

An On-Board Reductant Delivery System for Diesel Aftertreatment

2001-09-24
2001-01-3622
It has become evident that almost all diesel aftertreatment devices dealing with NOx and particulate matter (PM) controls require the addition of one or more reducing agents (reductants), such as diesel fuel, ammonia, or aqueous urea to enhance their efficiency and durability. These reductants can be used to catalytically convert NOx to N2, to enrich the air fuel ratio (A/F), or to increase temperatures for regenerating PM filters or for de-sulfating NOx traps. A number of injection methods have been developed recently to provide easy reductant addition. However, many of them may be cumbersome, costly, or ineffective. This paper describes a new reductant delivery system, which appears to minimize these shortcomings. To be effective, the manner of reductant injection into the exhaust is critical. First, the reductant must be added quickly to accommodate the fast transient operations.
Journal Article

Benefits of Pd Doped Zeolites for Cold Start HC/NOx Emission Reductions for Gasoline and E85 Fueled Vehicles

2018-04-03
2018-01-0948
In the development of HC traps (HCT) for reducing vehicle cold start hydrocarbon (HC)/nitrogen oxide (NOx) emissions, zeolite-based adsorbent materials were studied as key components for the capture and release of the main gasoline-type HC/NOx species in the vehicle exhaust gas. Typical zeolite materials capture and release certain HC and NOx species at low temperatures (<200°C), which is lower than the light-off temperature of a typical three-way catalyst (TWC) (≥250°C). Therefore, a zeolite alone is not effective in enhancing cold start HC/NOx emission control. We have found that a small amount of Pd (<0.5 wt%) dispersed in the zeolite (i.e., BEA) can significantly increase the conversion efficiency of certain HC/NOx species by increasing their release temperature. Pd was also found to modify the adsorption process from pure physisorption to chemisorption and may have played a role in the transformation of the adsorbed HCs to higher molecular weight species.
Technical Paper

Co-fueling of Urea for Diesel Cars and Trucks

2002-03-04
2002-01-0290
Urea SCR is an established method to reduce NOx in dilute exhaust gas. The method is being used currently with stationary powerplants, and successful trials on motor vehicles have been conducted. The reason most often cited for rejecting urea SCR is lack of urea supply infrastructure, yet urea and other high nitrogen products are traded as commodities on the world market as a fertilizer grade, and an industrial grade is emerging. For a subset of commercial vehicles, urea can be provided by service personnel at designated terminals. But this approach does not support long distance carriers and personal use vehicles. The preferred delivery method is to add urea during vehicle refueling through a common fuel nozzle and fill pipe interface: urea / diesel co-fueling. Aqueous urea is well suited to delivery in this fashion.
Technical Paper

Cold Start Performance and Enhanced Thermal Durability of Vanadium SCR Catalysts

2009-04-20
2009-01-0625
For diesel applications, cold start accounts for a large amount of the total NOx emissions during a typical Federal Test Procedure (FTP) for light-duty vehicles and is a key focus for reducing NOx emissions. A common form of diesel NOx aftertreatment is selective catalytic reduction (SCR) technology. For cold start NOx improvement, the SCR catalyst would be best located as the first catalyst in the aftertreatment system; however, engine-out hydrocarbons and no diesel oxidation catalyst (DOC) upstream to generate an exotherm for desulfation can result in degraded SCR catalyst performance. Recent advances in vanadia-based SCR (V-SCR) catalyst technology have shown better low temperature NOx performance and improved thermal durability. Three V-SCR technologies were tested for their thermal durability and low-temperature NOx performance, and after 600°C aging, one technology showed low-temperature performance on par with state-of-the-art copper-zeolite SCR (Cu-SCR) technology.
Journal Article

Combined Fe-Cu SCR Systems with Optimized Ammonia to NOx Ratio for Diesel NOx Control

2008-04-14
2008-01-1185
Selective catalytic reduction (SCR) is a viable option for control of oxides of nitrogen (NOx) from diesel engines. Currently, copper zeolite (Cu-zeolite) SCR catalysts are favored for configurations where the exhaust gas temperature is below 450°C for the majority of operating conditions, while iron zeolite (Fe-zeolite) SCR catalysts are preferred where NOx conversion is needed at temperatures above 450°C. The selection of Cu-zeolite or Fe-zeolite SCR catalysts is based on the different performance characteristics of these two catalyst types. Cu-zeolite catalysts are generally known for having efficient NOx reduction at low temperatures with little or no NO2, and they tend to selectively oxidize ammonia (NH3) to N2 at temperatures above 400°C, leading to poor NOx conversion at elevated temperatures.
Technical Paper

Combustion Improvement of a Light Stratified-Charge Direct Injection Engine

2004-03-08
2004-01-0546
In the effort to improve combustion of a Light-load Stratified-Charge Direct-Injection (LSCDI) combustion system, CFD modeling, together with optical engine diagnostics and single cylinder engine testing, was applied to resolve some key technical issues. The issues associated with stratified-charge (SC) operation are combustion stability, smoke emission, and NOx emission. The challenges at homogeneous-charge operation include fuel-air mixing homogeneity at partial load operation, smoke emission and mixing homogeneity at low speed WOT, and engine knock tendency reduction at medium speed WOT operations. In SC operation, the fuel consumption is constrained with the acceptable smoke emission level and stability limit. With the optimization of piston design and injector specification, the smoke emission can be reduced. Concurrently, the combustion stability window and fuel consumption can be also significantly improved.
Technical Paper

Comparison of Analytically and Experimentally Obtained Residual Fractions and NOX Emissions in Spark-Ignited Engines

1998-10-19
982562
Using a fast-sampling valve, residual-fraction levels were determined in a 2.0L spark-ignited production engine, over varying engine operating conditions. Individual samples for each operating condition were analyzed by gas-chromatography which allowed for the determination of in-cylinder CO and CO2 levels. Through a comparison of in-cylinder measurement and exhaust data measurements, residual molar fraction (RMF) levels were determined and compared to analytical results. Analytical calculations were performed using the General Engine SIMulation (GESIM) which is a steady state quasi-dimensional engine combustion cycle simulation. Analytical RMF levels, for identical engine operating conditions, were compared to the experimental results as well as a sensitivity study on wave-dynamics and heat transfer on the analytically predicted RMF. Similarly, theoretical and experimental NOx emissions were compared and production sensitivity on RMF levels explored.
Technical Paper

Cu/Zeolite SCR on High Porosity Filters: Laboratory and Engine Performance Evaluations

2009-04-20
2009-01-0897
Selective catalytic reduction (SCR) is expected to be used extensively in the U.S. for diesel vehicle NOx control. Much progress has been made on improving performance and reducing complexity of SCR systems for vehicles in the past several years. SCR system complexity can be reduced further by implementation of SCR-coated diesel particulate filters (SCRFs). In this system, a high porosity (> 50%) filter substrate is coated with an SCR formulation, ideally in the pores of the filter walls, so that the DPF and SCR functions can be combined into a single catalyst. Two state-of-the-art Cu/zeolite SCR formulations and three types of high porosity filter substrates were included in this study. Laboratory and engine-dynamometer tests were performed to measure NOx conversion under a variety of conditions to assess the impact of ammonia oxidation, inlet NO2/NOx ratio, ammonia/NOx ratio, oxygen level, space velocity, soot loading, and ammonia loading level.
Technical Paper

Design of an Additive Manufactured Natural Gas Engine with Thermally Conditioned Active Prechamber

2022-06-14
2022-37-0001
In order to decarbonize and lower the overall emissions of the transport sector, immediate and cost-effective powertrain solutions are needed. Natural gas offers the advantage of a direct reduction of carbon dioxide (CO2) emissions due to its better Carbon to Hydrogen ratio (C/H) compared to common fossil fuels, e.g. gasoline or diesel. Moreover, an optimized engine design suiting the advantages of natural gas in knock resistance and lean mixtures keeping in mind the challenges of power density, efficiency and cold start manoeuvres. In the public funded project MethMag (Methane lean combustion engine) a gasoline fired three-cylinder-engine is redesigned based on this change of requirements and benchmarked against the previous gasoline engine.
Journal Article

Detection, Origin and Effect of Ultra-Low Platinum Contamination on Diesel-SCR Catalysts

2008-10-06
2008-01-2488
This paper discusses the poisoning of a selective catalytic reduction (SCR) catalyst by trace levels of platinum originating from an upstream diesel oxidation catalyst (DOC). A diesel aftertreatment system consisting of a DOC, urea based SCR Catalyst and a DPF was aged and evaluated on a 6.4 liter diesel engine dynamometer. The SCR catalyst system consisted of an Fe-zeolite catalyst followed by a Cu-zeolite catalyst. After approximately 400 hours of engine operation at varied exhaust flow rates and temperatures, deactivation of the SCR catalyst was observed. A subsequent detailed investigation revealed that the Cu catalyst was not deactivated and the front half of the Fe-based catalyst showed severe deactivation. The deactivated portion of the catalyst showed high activity of NH3 conversion to NOx and N2O formation. The cause of the deactivation was identified to be the presence of trace Pt contamination.
Technical Paper

Development of Emission Transfer Functions for Predicting the Deterioration of a Cu-Zeolite SCR Catalyst

2009-04-20
2009-01-1282
Urea selective catalytic reduction (SCR) catalysts have the capability to deliver the high NOx conversion efficiencies required for future emission standards. However, the potential for the occasional over-temperature can lead to the irreversible deactivation of the SCR catalyst. On-board diagnostics (OBD) compliance requires monitoring of the SCR function to make sure it is operating properly. Initially, SCR catalyst performance metrics such as NOx conversion, NH3 oxidation, NH3 storage capacity, and BET surface area are within normal limits. However, these features degrade with high temperature aging. In this work, a laboratory flow reactor was utilized to determine the impact on these performance metrics as a function of aging condition. Upon the completion of a full time-at-temperature durability study, four performance criteria were established to help determine a likely SCR failure.
Technical Paper

Development of a 5-Component Diesel Surrogate Chemical Kinetic Mechanism Coupled with a Semi-Detailed Soot Model with Application to Engine Combustion and Emissions Modeling

2023-08-28
2023-24-0030
In the present work, five surrogate components (n-Hexadecane, n-Tetradecane, Heptamethylnonane, Decalin, 1-Methylnaphthalene) are proposed to represent liquid phase of diesel fuel, and another different five surrogate components (n-Decane, n-Heptane, iso-Octane, MCH (methylcyclohexane), Toluene) are proposed to represent vapor phase of diesel fuel. For the vapor phase, a 5-component surrogate chemical kinetic mechanism has been developed and validated. In the mechanism, a recently updated H2/O2/CO/C1 detailed sub-mechanism is adopted for accurately predicting the laminar flame speeds over a wide range of operating conditions, also a recently updated C2-C3 detailed sub-mechanism is used due to its potential benefit on accurate flame propagation simulation. For each of the five diesel vapor surrogate components, a skeletal sub-mechanism, which determines the simulation of ignition delay times, is constructed for species C4-Cn.
X