Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1996 GM 7.4 Liter Engine Upgrade

1996-02-01
960012
General Motors Powertrain Division has developed the next generation big block V8 engine for introduction in the 1996 model year. In addition to meeting tighter emission and on-board diagnostic legislation, this engine evolved to meet both customer requirements and competitive challenges. Starting with the proven dependability of the time tested big block V8, goals were set to substantially increase the power, torque, fuel economy and overall pleaseability of GM's large load capacity gasoline engine. The need for this new engine to meet packaging requirements in many vehicle platforms, both truck and OEM, as well as a requirement for minimal additional heat rejection over the engine being replaced, placed additional constraints on the design.
Technical Paper

1997 GM 5.7 LITER LS1 V8 ENGINE

1997-02-24
970915
General Motors Powertrain Group (GMPTG) has developed an all new small block V8 engine, designated LS1, for introduction into the 1997 Corvette. This engine was designed to meet both customer requirements and competitive challenges while also meeting the ever increasing legislated requirements of emissions and fuel economy. This 5.7L V8 provides increased power and torque while delivering higher fuel economy. In addition, improvements in both QRD and NVH characteristics were made while meeting packaging constraints and achieving significant mass reductions.
Technical Paper

2006 Chevrolet Corvette C6 Z06 Aerodynamic Development

2005-04-11
2005-01-1943
This paper is intended to give a general overview of the key aerodynamic developments for the 2006 Chevrolet Corvette C6 Z06. Significant computational and wind tunnel time were used to develop the 2006 Z06 to provide it with improved high speed stability, increased cooling capability and equivalent drag compared to the 2004 Chevrolet Corvette C5 Z06.
Technical Paper

A Three-Pillar Framework for Model-Based Engine Control System Development

2007-04-16
2007-01-1624
This paper presents a comprehensive Matlab/Simulink-based framework that affords a rapid, systematic, and efficient engine control system development process including automated code generation. The proposed framework hinges on three essential pillars: 1 ) an accurate model for the target engine, 2) a toolset for systematic control design, and 3) a modular system architecture that enhances feature reusability and rapid algorithm deployment. The proposed framework promotes systematic model-based algorithm development and validation in virtual reality. Within this context, the framework affords integration and evaluation of the entire control system at an early development stage, seamless transitions across inherently incompatible product development stages, and rapid code generation for production target hardware.
Technical Paper

Accelerated Glass Reveal Molding Test

1998-02-23
980718
Over the past 20 years, polyvinyl chloride (PVC) has almost replaced metal in stationary glass reveal moldings with dramatic part cost savings on cars and trucks world-wide. The process of assembly is generally simple and convenient but to replace a reveal molding can be difficult. Many times, in order to replace the molding, it may also be necessary to replace or reseal the glass. In short, PVC reveal moldings, relatively inexpensive parts, are very expensive to service. Outside of general assembly and processing issues, there are 5 variables that may cause a failure in the performance of a stationary glass reveal molding. They are as follows: material degradation, crystallization, plasticizer loss, material properties, and molded-in stress. Because of modern standard PVC formulations and the material requirements of most automotive companies, material degradation, crystallization and plasticizer loss do not commonly cause failure. Material properties and molded-in stress do.
Technical Paper

Accuracy of Total Hydrocarbon Analyzer Measurements Measurements in the SULEV Region

2003-03-03
2003-01-0388
The super-ultra-low-emission-vehicle (SULEV) non-methane organic gas (NMOG) hydrocarbon exhaust standard as legislated by the state of California LEV II regulations is 10 milligrams per mile. This requires that the associative instrumentation must be capable of accurately and precisely determining total hydrocarbons (THC) concentrations on the order of 10 parts per billion-carbon (ppbC) for vehicle tests run under optimum conditions on a bag mini-diluter (BMD) test site. The flame ionization detector (FID) is the standard instrument used in the measurement of THC. Currently, there are many instrument manufacturers that produce these types of analyzers. This paper studies the limit of detection and accuracy capabilities of one of these instruments, the Beckman 400A FID. In addition, the paper shows evidence that supports that this “state of technology” as described by this instrument, is sufficient to meet the demands of the today's most stringent, vehicle emission standards.
Technical Paper

An Integrated Process of CFD Analysis and Design Optimization with Underhood Thermal Application

2001-03-05
2001-01-0637
With the revolutionary advances in computing power and software technology, the future trend of integrating design and CFD analysis software package to realize an automated design optimization has been explored in this study. The integrated process of UG, ICEMCFD, and FLUENT was accomplished using iSIGHT for vehicle Aero/Thermal applications. Process integration, CFD solution strategy, optimization algorithm and the practicality for real world problem of this process have been studied, and will be discussed in this paper. As an example of this application, the results of an underhood thermal design will be presented. The advantage of systematical and rapid design exploration is demonstrated by using this integrated process. It also shows the great potential of computer based design automation in vehicle Aero/Thermal development.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Bolt-load Retention Testing of Magnesium Alloys for Automotive Applications

2006-04-03
2006-01-0072
For automotive applications at elevated temperatures, the need for sufficient creep resistance of Mg alloys is often associated with retaining appropriate percentages of initial clamp loads in bolt joints. This engineering property is often referred to as bolt-load retention (BLR); BLR testing is a practical method to quantify the bolt load with time for engineering purposes. Therefore, standard BLR test procedures for automotive applications are desired. This report summarizes the effort in the Structural Cast Magnesium Development (SCMD) project under the United States Automotive Materials Partnership (USAMP), to provide a technical basis for recommending a general-purpose and a design-purpose BLR test procedures for BLR testing of Mg alloys for automotive applications. The summary includes results of factors influencing BLR and related test techniques from open literature, automotive industry and research carried out in this laboratory project.
Technical Paper

Brake Squeal Noise Testing and Analysis Correlation

2003-05-05
2003-01-1616
Brake squeal has been a persistent quality issue for automobile OEMs and brake system suppliers. The ability to model and measure brake squeal dynamics is of utmost importance in brake squeal reduction efforts. However, due to the complex nature of brake squeal and the wide frequency range in which it occurs, it is difficult to accurately correlate and update analytical models to experimental results. This paper introduces a systematic and rigorous correlation and updating process that yields FE models, which can accurately reproduce high-frequency brake squeal dynamics.
Technical Paper

Brake and Cruise System Integration using Robust Engineering

2003-03-03
2003-01-1095
This paper presents a project that was done to solve an integration problem between a brake system and a cruise control system on a GM vehicle program, each of which was supplied by a different supplier. This paper presents how the problem was resolved using a CAE tool which was a combination of formulated MS/Excel spreadsheet, Overdrive (GM internal code), and iSIGHT of Engineous Software Inc, which is a process integrator and process automator. A sensitivity study of system reliability was conducted using iSIGHT. The most sensitive factor was found through the sensitivity study. Thereafter, a Robust design was obtained. The recommended Robust Design was implemented in the vehicle program, which led to a substantial cost saving. The CAE software tool (the combination) developed through the problem solving process will be used to ensure quality of brake and cruise system performance for future vehicle programs.
Technical Paper

Data-Driven Driving Skill Characterization: Algorithm Comparison and Decision Fusion

2009-04-20
2009-01-1286
By adapting vehicle control systems to the skill level of the driver, the overall vehicle active safety provided to the driver can be further enhanced for the existing active vehicle controls, such as ABS, Traction Control, Vehicle Stability Enhancement Systems. As a follow-up to the feasibility study in [1], this paper provides some recent results on data-driven driving skill characterization. In particular, the paper presents an enhancement of discriminant features, the comparison of three different learning algorithms for recognizer design, and the performance enhancement with decision fusion. The paper concludes with the discussions of the experimental results and some of the future work.
Technical Paper

Design of a Full-Scale Impact System for Analysis of Vehicle Pedestrian Collisions

2005-04-11
2005-01-1875
The complexity of vehicle-pedestrian collisions necessitates extensive validation of pedestrian computational models. While body components can be individually simulated, overall validation of human pedestrian models requires full-scale testing with post mortem human surrogates (PMHS). This paper presents the development of a full-scale pedestrian impact test plan and experimental design that will be used to perform PMHS tests to validate human pedestrian models. The test plan and experimental design is developed based on the analysis of a combination of literature review, multi-body modeling, and epidemiologic studies. The proposed system has proven effective in testing an anthropometrically correct rescue dummy in multiple instances. The success of these tests suggests the potential for success in a full-scale pedestrian impact test using a PMHS.
Technical Paper

Development and Optimization of a Small-Displacement Spark-Ignition Direct-Injection Engine - Full-Load Operation

2004-03-08
2004-01-0034
Full-load operation of a small-displacement spark-ignition direct-injection (SIDI) engine was thoroughly investigated by means of computational analysis and engine measurements. The performance is affected by many different factors, which can be grouped as those pertaining to volumetric efficiency, to mixing and stratification, and to system issues, respectively. Volumetric efficiency is affected by flow losses, tuning and charge cooling. Charge cooling due to spray vaporization is often touted as the most significant benefit of direct-injection on full-load performance. However, if wall wetting occurs, this benefit may be completely negated or even reversed. The fuel-air mixing is strongly affected by the injection timing and characteristics at lower engine speeds, while at higher engine speeds the intake flow dominates the transport of fuel particles and resultant vapor distribution. A higher injector flow rate enhances mixing especially at higher engine speeds.
Technical Paper

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2007-04-16
2007-01-0417
Since 2000, an Aluminum Cosmetic Corrosion task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has existed. The task group has pursued the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. A cooperative program uniting OEM, supplier, and consultants has been created and has been supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Prior to this committee's formation, numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels. However, correlations between these laboratory test results and in-service performance have not been established. Thus, the primary objective of this task group's project was to identify an accelerated laboratory test method that correlates well with in-service performance.
Technical Paper

Development of the 2006 Corvette Z06 Structural Cast Magnesium Crossmember

2005-04-11
2005-01-0340
Since its very beginning in 1953, Corvette has been a pioneer in light weight material applications. The new 6th generation corvette high performance Z06 model required aggressive weight savings to achieve its performance and fuel economy targets. In addition to aluminum body structure and some carbon fiber components, the decision to use a magnesium front crossmember was identified to help achieve the targets. An overview of the Structural Cast Magnesium Development (SCMD) project will be presented which will provide information on key project tasks. Project focus was to develop the science and technical expertise to manufacture and validate large structural magnesium castings, which provide a weight reduction potential of 35 percent with respect to aluminum. The die cast magnesium cradle is being produced from a Mg-Al-RE alloy, designated AE44, for high temperature creep and strength performance as well as casting ductility requirements.
Technical Paper

Development of the SAE Biaxial Wheel Test Load File

2004-03-08
2004-01-1578
Recently published SAE Recommended Practice J2562 - SAE Biaxial Wheel Test standardized the terminology, equipment, and test procedure for the biaxial wheel test. This test was originally presented by Fraunhofer Institut Betriebsfestigkeit - LBF (Fraunhofer Institute for Structural Durability) in SAE paper 830135 “Automotive Wheels, Method and Procedure for Optimal Design and Testing”. The first release of SAE J2562 included a generic, scalable load file applicable to wheels designed for five to eight passenger vehicles with capacity to carry a proportional amount of luggage or ballast. Future releases of SAE J2562 would include two additional load files; one applicable to light trucks that have substantial cargo capacity and one for sports cars typically limited to two passengers and marginal luggage. This report details the process used to develop the SAE Biaxial Wheel Test Load File for passenger vehicles.
Technical Paper

Driver Understanding and Recognition of Automotive ISO Symbols

1988-02-01
880056
This study assesses the understanding and recognition, by U.S. drivers, of the 25 automotive ISO symbols specified in SAE Standard J1048. A two-part survey was administered to 505 volunteers at a Secretary of State's office located in a Detroit suburb. Percentage results for symbol understanding indicated low levels of understanding for many symbols; percentage results for symbol recognition were generally much higher for all symbols. The effects of gender, age, and education level on the percentage results are summarized.
Technical Paper

Dynamic Moving Mesh CFD Study of Semi-truck Passing a Stationary Vehicle with Hood Open

2007-04-16
2007-01-0111
This paper examines the aerodynamic forces on the open hood of a stationary vehicle when another large vehicle, such as an 18-wheel semi-truck, passes by at high speed. The problem of semi-truck passing a parked car with hood open is solved as a transient two-vehicle aerodynamics problem with a Dynamic Moving Mesh (DMM) capability in commercial CFD software package FLUENT. To assess the computational feasibility, a simplified compact car / semi-truck geometry and CFD meshes are used in the first trial example. At 70 mph semi-truck speed, the CFD results indicate a peak aerodynamic force level of 20N to 30N on the hood of the car, and the direction of the net forces and moments on the hood change multiple times during the passing event.
Technical Paper

Early Noise Analysis for Robust Quiet Brake Design

2009-04-20
2009-01-0858
At the early design stage it is easier to achieve impacts on the brake noise. However most noise analyses are applied later in the development stage when the design space is limited and changes are costly. Early noise analysis is seldom applied due to lack of credible inputs for the finite element modeling, the sensitive nature of the noise, and reservations on the noise event screening of the analysis. A high quality brake finite element model of good components’ and system representation is the necessary basis for credible early noise analysis. That usually requires the inputs from existing production hardware. On the other hand in vehicle braking the frequency contents and propensity of many noise cases are sensitive to minor component design modifications, environmental factors and hardware variations in mass production. Screening the noisy modes and their sensitivity levels helps confirm the major noisy event at the early design stage.
X