Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1996 GM 7.4 Liter Engine Upgrade

1996-02-01
960012
General Motors Powertrain Division has developed the next generation big block V8 engine for introduction in the 1996 model year. In addition to meeting tighter emission and on-board diagnostic legislation, this engine evolved to meet both customer requirements and competitive challenges. Starting with the proven dependability of the time tested big block V8, goals were set to substantially increase the power, torque, fuel economy and overall pleaseability of GM's large load capacity gasoline engine. The need for this new engine to meet packaging requirements in many vehicle platforms, both truck and OEM, as well as a requirement for minimal additional heat rejection over the engine being replaced, placed additional constraints on the design.
Technical Paper

1997 GM 5.7 LITER LS1 V8 ENGINE

1997-02-24
970915
General Motors Powertrain Group (GMPTG) has developed an all new small block V8 engine, designated LS1, for introduction into the 1997 Corvette. This engine was designed to meet both customer requirements and competitive challenges while also meeting the ever increasing legislated requirements of emissions and fuel economy. This 5.7L V8 provides increased power and torque while delivering higher fuel economy. In addition, improvements in both QRD and NVH characteristics were made while meeting packaging constraints and achieving significant mass reductions.
Technical Paper

2006 Chevrolet Corvette C6 Z06 Aerodynamic Development

2005-04-11
2005-01-1943
This paper is intended to give a general overview of the key aerodynamic developments for the 2006 Chevrolet Corvette C6 Z06. Significant computational and wind tunnel time were used to develop the 2006 Z06 to provide it with improved high speed stability, increased cooling capability and equivalent drag compared to the 2004 Chevrolet Corvette C5 Z06.
Technical Paper

A Case Study on Airborne Road Noise Reduction of a Passenger Vehicle

2003-05-05
2003-01-1407
This paper presents a case study on reducing road noise of a passenger vehicle. SEA, insertion loss and sound intensity measurements were the tools used in the study. A SEA model was constructed to predict the primary paths (panels or area) contributing to the overall interior sound field. Insertion loss measurements were used to verify the primary contributing paths identified using SEA. To provide further details of the primary paths, intensity maps of identified panels were measured allowing detailed reconstruction of the contributory panels. The SEA model, insertion loss, and intensity maps aided in providing possible design fixes that will effectively reduce road noise. Finally, comparisons of predicted results versus actual results at both a subsystem and a full vehicle level are included in this paper.
Technical Paper

A Three-Pillar Framework for Model-Based Engine Control System Development

2007-04-16
2007-01-1624
This paper presents a comprehensive Matlab/Simulink-based framework that affords a rapid, systematic, and efficient engine control system development process including automated code generation. The proposed framework hinges on three essential pillars: 1 ) an accurate model for the target engine, 2) a toolset for systematic control design, and 3) a modular system architecture that enhances feature reusability and rapid algorithm deployment. The proposed framework promotes systematic model-based algorithm development and validation in virtual reality. Within this context, the framework affords integration and evaluation of the entire control system at an early development stage, seamless transitions across inherently incompatible product development stages, and rapid code generation for production target hardware.
Technical Paper

Accelerated Glass Reveal Molding Test

1998-02-23
980718
Over the past 20 years, polyvinyl chloride (PVC) has almost replaced metal in stationary glass reveal moldings with dramatic part cost savings on cars and trucks world-wide. The process of assembly is generally simple and convenient but to replace a reveal molding can be difficult. Many times, in order to replace the molding, it may also be necessary to replace or reseal the glass. In short, PVC reveal moldings, relatively inexpensive parts, are very expensive to service. Outside of general assembly and processing issues, there are 5 variables that may cause a failure in the performance of a stationary glass reveal molding. They are as follows: material degradation, crystallization, plasticizer loss, material properties, and molded-in stress. Because of modern standard PVC formulations and the material requirements of most automotive companies, material degradation, crystallization and plasticizer loss do not commonly cause failure. Material properties and molded-in stress do.
Technical Paper

Accuracy of Total Hydrocarbon Analyzer Measurements Measurements in the SULEV Region

2003-03-03
2003-01-0388
The super-ultra-low-emission-vehicle (SULEV) non-methane organic gas (NMOG) hydrocarbon exhaust standard as legislated by the state of California LEV II regulations is 10 milligrams per mile. This requires that the associative instrumentation must be capable of accurately and precisely determining total hydrocarbons (THC) concentrations on the order of 10 parts per billion-carbon (ppbC) for vehicle tests run under optimum conditions on a bag mini-diluter (BMD) test site. The flame ionization detector (FID) is the standard instrument used in the measurement of THC. Currently, there are many instrument manufacturers that produce these types of analyzers. This paper studies the limit of detection and accuracy capabilities of one of these instruments, the Beckman 400A FID. In addition, the paper shows evidence that supports that this “state of technology” as described by this instrument, is sufficient to meet the demands of the today's most stringent, vehicle emission standards.
Technical Paper

Acoustical Advantages of a New Polypropylene Absorbing Material

1999-05-17
1999-01-1669
Sound absorption is one way to control noise in automotive passenger compartments. Fibrous or porous materials absorb sound in a cavity by dissipating energy associated with a propagating sound wave. The objective of this study was to evaluate the acoustic performance of a cotton fiber absorbing material in comparison to a new polypropylene fibrous material, called ECOSORB ®. The acoustical evaluation was done using measurements of material properties along with sound pressure level from road testing of a fully-assembled vehicle. The new polypropylene fibrous material showed significant advantages over the cotton fiber materials in material properties testing and also in-vehicle measurements. In addition to the performance benefits, the polypropylene absorber provided weight savings over the cotton fiber material.
Technical Paper

Aeroacoustics of an Automobile A-Pillar Rain Gutter: Computational and Experimental Study

1999-03-01
1999-01-1128
Noise due to the flow over an automobile A-pillar rain gutter in isolation was computed using a two step procedure. Initially the flow solution was obtained by solving the Reynolds Averaged Navier Stokes (RANS) equations. Acoustical Sources were extracted from the flow solution and propagated to the far-field using the Lighthill-Curle equation. Experiments were conducted to evaluate the computations. Compared results include steady pressures, time dependent pressures, and sound intensity levels. Computed results and experimental data were reduced in a similar way to ensure a one to one comparison. Computed results are in good agreement with the experimental values. A-weighted noise levels are predicted reasonably well.
Technical Paper

An Integrated Process of CFD Analysis and Design Optimization with Underhood Thermal Application

2001-03-05
2001-01-0637
With the revolutionary advances in computing power and software technology, the future trend of integrating design and CFD analysis software package to realize an automated design optimization has been explored in this study. The integrated process of UG, ICEMCFD, and FLUENT was accomplished using iSIGHT for vehicle Aero/Thermal applications. Process integration, CFD solution strategy, optimization algorithm and the practicality for real world problem of this process have been studied, and will be discussed in this paper. As an example of this application, the results of an underhood thermal design will be presented. The advantage of systematical and rapid design exploration is demonstrated by using this integrated process. It also shows the great potential of computer based design automation in vehicle Aero/Thermal development.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Application of Elastomeric Components for Noise and Vibration Isolation in the Automotive Industry

2001-04-30
2001-01-1447
Elastomeric isolators are used in a variety of different applications to reduce noise and vibration. To use isolators effectively requires the product design and development engineer to satisfy multiple objectives, which typically include packaging restrictions, environmental criteria, limitations on motion control, load requirements, and minimum fatigue life, in addition to vibration isolation performance. An understanding of elastomeric material properties and the methods used to characterize elastomeric component behavior is necessary to achieve desired performance. Typical design criteria and functional objectives for various isolator applications, including powertrain mounts, suspension control arm bushings, shock absorber bushings, exhaust hangers, flexible couplings, cradle mounts, body mounts and vibration dampers are also discussed.
Technical Paper

Application of Experimental Transfer Path Analysis and Hybrid FRF-Based Substructuring Model to SUV Axle Noise

2005-04-11
2005-01-1833
This paper describes an axle gear whine noise reduction process that was developed and applied using a combination of experimental and analytical methods. First, an experimental Transfer Path Analysis (TPA) was used to identify major noise paths. Next, modeling and forced response simulation were conducted using the Hybrid FEA-Experimental FRF method known as HYFEX [1]. The HYFEX model consisted of an experimental FRF representation of the frame/body and a finite element (FE) model of the driveline [2] and suspension. The FE driveline model was calibrated using experimental data. The HYFEX model was then used to simulate the axle noise reduction that would be obtained using a modified frame, prior to the availability of a prototype. Hardware testing was used as the final step in the process to confirm the results of the simulation.
Technical Paper

Bolt-load Retention Testing of Magnesium Alloys for Automotive Applications

2006-04-03
2006-01-0072
For automotive applications at elevated temperatures, the need for sufficient creep resistance of Mg alloys is often associated with retaining appropriate percentages of initial clamp loads in bolt joints. This engineering property is often referred to as bolt-load retention (BLR); BLR testing is a practical method to quantify the bolt load with time for engineering purposes. Therefore, standard BLR test procedures for automotive applications are desired. This report summarizes the effort in the Structural Cast Magnesium Development (SCMD) project under the United States Automotive Materials Partnership (USAMP), to provide a technical basis for recommending a general-purpose and a design-purpose BLR test procedures for BLR testing of Mg alloys for automotive applications. The summary includes results of factors influencing BLR and related test techniques from open literature, automotive industry and research carried out in this laboratory project.
Technical Paper

Brake Noise Analysis with Lining Wear

2008-04-14
2008-01-0823
It is well known that lining reduction through wear affects contact pressure profile and noise generation. Due to high complexity in brake noise analysis, many factors were not included in previous analyses. In this paper, a new analysis process is performed by running brake “burnishing” cycles first, followed by noise analysis. In the paper, brake lining reduction due to wear is assumed to be proportional to the applied brake pressure with ABAQUS analysis. Brake pads go through four brake application-releasing cycles until the linings settle to a more stable pressure distribution. The resulting pressure profiles show lining cupping and high pressure spots shifting. The pressure distributions are compared to TekScan measurements. Brake noise analysis is then conducted with complex eigenvalue analysis steps; the resulting stability chart is better correlated to testing when the wear is comprehended.
Technical Paper

Brake Squeal Noise Testing and Analysis Correlation

2003-05-05
2003-01-1616
Brake squeal has been a persistent quality issue for automobile OEMs and brake system suppliers. The ability to model and measure brake squeal dynamics is of utmost importance in brake squeal reduction efforts. However, due to the complex nature of brake squeal and the wide frequency range in which it occurs, it is difficult to accurately correlate and update analytical models to experimental results. This paper introduces a systematic and rigorous correlation and updating process that yields FE models, which can accurately reproduce high-frequency brake squeal dynamics.
Technical Paper

Brake Squeal Reduction Using Robust Design

2003-03-03
2003-01-0879
This paper discusses a standard procedure to reduce brake squeal using CAE and robust synthesis & analysis techniques. There are several techniques available to evaluate the stability of a system. Complex eigenvalue analysis is used for predicting and reducing squeal propensity. The complex eigenvalue method was implemented using SOL110 in version 2001 of MSC/NSTRAN for this study. We applied the signal to noise ratio using an orthogonal matrix to evaluate the main parameter effects and minimize the sensitivity.
Technical Paper

Brake and Cruise System Integration using Robust Engineering

2003-03-03
2003-01-1095
This paper presents a project that was done to solve an integration problem between a brake system and a cruise control system on a GM vehicle program, each of which was supplied by a different supplier. This paper presents how the problem was resolved using a CAE tool which was a combination of formulated MS/Excel spreadsheet, Overdrive (GM internal code), and iSIGHT of Engineous Software Inc, which is a process integrator and process automator. A sensitivity study of system reliability was conducted using iSIGHT. The most sensitive factor was found through the sensitivity study. Thereafter, a Robust design was obtained. The recommended Robust Design was implemented in the vehicle program, which led to a substantial cost saving. The CAE software tool (the combination) developed through the problem solving process will be used to ensure quality of brake and cruise system performance for future vehicle programs.
Technical Paper

Case Study - Experimental Determination of Airborne and Structure-borne Road Noise Spectral Content on Passenger Vehicles

2005-05-16
2005-01-2522
Appropriate road noise levels are critical to perceived quality in today's highly competitive automotive industry. Tire noise is often one of the dominant sources. In order to provide effective noise control schemes it is imperative to fully define the noise paths. In this paper, a case study of an experimental lab method is presented that allows definitive understanding of the structure-borne and airborne spectral contributions of tire noise. For this study, interior noise data were collected using a 10 ft road wheel. Data were collected for the front and rear tires. These measurements contained both the structure-borne and airborne contributions. The same test was performed with the tire physically disconnected from the vehicle structure. This measurement contained only the airborne contribution. The structure-borne contribution was then calculated as the difference in noise levels between the two cases.
Technical Paper

Computational Analysis and Design to Minimize Vehicle Roof Rack Wind Noise

2005-04-11
2005-01-0602
This paper presents a study of roof rack wind noise using commercial Computational Fluid Dynamics (CFD) software. The focus is to predict the noise generated from the roof rack cross bars mounted on a realistic vehicle geometry. Design iterations are created by altering the cross bar orientation. Results from the CFD simulations include frequency spectra of Sound Pressure Level (SPL) for comparison to typical wind tunnel measurements. Aerodynamic results of body lift, drag, and transient flow visualization are also produced to support the noise data. The CFD and physical experiments compare very well with respect to tonal noise generation, tonal frequency content, and relative magnitudes. It is concluded that the CFD method is suitable for predicting relative performance, ranking design concepts, and optimizing large scale geometry parameters of vehicle roof racks in a production-engineering environment.
X