Refine Your Search

Topic

Author

Search Results

Technical Paper

A Direct 1D/3D (GT-SUITE/SimericsMP+) Coupled Computational Approach to Study the Impact of Engine Oil Pan Sloshing on Lubrication Pump Performance

2020-04-14
2020-01-1112
During a vehicle drive cycle, the oil in the engine oil pan sloshes very vigorously due to the acceleration of the vehicle. This can cause the pickup tube in the engine oil pan to become uncovered from oil and exposed to air, which affects the lubrication pump performance. Engine oil pan sloshing is inherently a 3D problem as the free oil surface is constantly changing. Multi-dimensional Computational Fluid Dynamics (CFD) methods are very useful to simulate such problems with high detail and accuracy but are computationally very expensive. Part of the engine lubrication system, such as the pump, can be modelled in 1D which can predict accurate results at relatively high computational speeds. By utilizing the advantages of both 1D and 3D CFD models, a coupled 1D-3D simulation approach has been developed to capture the detailed oil sloshing phenomenon in SimericsMP+ and the system level simulation is conducted in GT-SUITE where 3D spatial data is not required.
Technical Paper

A Mechanism-Based Thermomechanical Fatigue Life Assessment Method for High Temperature Engine Components with Gradient Effect Approximation

2019-04-02
2019-01-0536
High temperature components in internal combustion engines and exhaust systems must withstand severe mechanical and thermal cyclic loads throughout their lifetime. The combination of thermal transients and mechanical load cycling results in a complex evolution of damage, leading to thermomechanical fatigue (TMF) of the material. Analytical tools are increasingly employed by designers and engineers for component durability assessment well before any hardware testing. The DTMF model for TMF life prediction, which assumes that micro-crack growth is the dominant damage mechanism, is capable of providing reliable predictions for a wide range of high-temperature components and materials in internal combustion engines. Thus far, the DTMF model has employed a local approach where surface stresses, strains, and temperatures are used to compute damage for estimating the number of cycles for a small initial defect or micro-crack to reach a critical length.
Technical Paper

A New Rotating Wedge Clutch Actuation System

2017-10-08
2017-01-2441
Rotating clutches play an important role in automatic transmissions (AT), dual-clutch transmissions (DCT) and hybrid transmissions. It is very important to continually improve the transmission systems in the areas such as simplifying actuator designs, reducing cost and increasing controllability. A new concept of electrical motor driven actuation using a wedge mechanism, a wedge clutch, demonstrates potential benefits. This wedge clutch has the characteristics of good mechanical advantage, self-reinforcement, and faster and more precise controllability using electrical motor. In this paper, a new rotating wedge clutch is proposed. It presents a challenge since the motor actuator has to be stationary while the clutch piston is rotating. A new mechanism to connect the motor to the wedge piston, including dual-plane bearings and two mechanical ramp linkages, is studied. The design and verification of the physical structure of the actuator are discussed in detail in the paper.
Journal Article

A Study of Piston Geometry Effects on Late-Stage Combustion in a Light-Duty Optical Diesel Engine Using Combustion Image Velocimetry

2018-04-03
2018-01-0230
In light-duty direct-injection (DI) diesel engines, combustion chamber geometry influences the complex interactions between swirl and squish flows, spray-wall interactions, as well as late-cycle mixing. Because of these interactions, piston bowl geometry significantly affects fuel efficiency and emissions behavior. However, due to lack of reliable in-cylinder measurements, the mechanisms responsible for piston-induced changes in engine behavior are not well understood. Non-intrusive, in situ optical measurement techniques are necessary to provide a deeper understanding of the piston geometry effect on in-cylinder processes and to assist in the development of predictive engine simulation models. This study compares two substantially different piston bowls with geometries representative of existing technology: a conventional re-entrant bowl and a stepped-lip bowl. Both pistons are tested in a single-cylinder optical diesel engine under identical boundary conditions.
Technical Paper

Advanced Engine Cooling System for a Gas-Engine Vehicle Part I: A New Coolant Flow Control During Cold Start

2024-04-09
2024-01-2414
In this paper, we present a novel algorithm designed to accurately trigger the engine coolant flow at the optimal moment, thereby safeguarding gas-engines from catastrophic failures such as engine boil. To achieve this objective, we derive models for crucial temperatures within a gas-engine, including the engine combustion wall temperature, engine coolant-out temperature, engine block temperature, and engine oil temperature. To overcome the challenge of measuring hard-to-measure signals such as engine combustion gas temperature, we propose the use of new intermediate parameters. Our approach utilizes a lumped parameter concept with a mean-value approach, enabling precise temperature prediction and rapid simulation. The proposed engine thermal model is capable of estimating temperatures under various conditions, including steady-state or transient engine performance, without the need for extra sensors.
Technical Paper

An Innovative Hybrid Powertrain for Small and Medium Boats

2018-04-03
2018-01-0373
Hybridization is a mainstream technology for automobiles, and its application is rapidly expanding in other fields. Marine propulsion is one such field that could benefit from electrification of the powertrain. In particular, for boats to sail in enclosed waterways, such as harbors, channels, lagoons, a pure electric mode would be highly desirable. The main challenge to accomplish hybridization is the additional weight of the electric components, in particular the batteries. The goal of this project is to replace a conventional 4-stroke turbocharged Diesel engine with a hybrid powertrain, without any penalty in terms of weight, overall dimensions, fuel efficiency, and pollutant emissions. This can be achieved by developing a new generation of 2-Stroke Diesel engines, and coupling them to a state-of-the art electric system. For the thermal units, two alternative designs without active valve train are considered: opposed piston and loop scavenged engines.
Technical Paper

Application of a Mechanism-Based Short Crack Growth Model for the Fatigue Analysis of an Engine Cylinder Block Including Low-Frequency Thermal and High-Frequency Dynamic Loading

2023-04-11
2023-01-0595
Cast aluminum cylinder blocks are frequently used in gasoline and diesel internal combustion engines because of their light-weight advantage. However, the disadvantage of aluminum alloys is their relatively low strength and fatigue resistance which make aluminum blocks prone to fatigue cracking. Engine blocks must withstand a combination of low-cycle fatigue (LCF) thermal loads and high-cycle fatigue (HCF) combustion and dynamic loads. Reliable computational methods are needed that allow for accurate fatigue assessment of cylinder blocks under this combined loading. In several publications, the mechanism-based thermomechanical fatigue (TMF) damage model DTMF describing the growth of short fatigue cracks has been extended to include the effect of both LCF thermal loads and superimposed HCF loadings. This approach is applied to the finite life fatigue assessment of an aluminum cylinder block. The required material properties related to LCF are determined from uniaxial LCF tests.
Technical Paper

Automotive Turbocharger Rotor Optimization Using Machine Learning Technique

2022-03-29
2022-01-0216
Turbochargers are widely employed in internal combustion engines, in both, diesel and gasoline vehicle, to boost the power without any extra fuel usage. Turbocharger comes in different sizes based upon the boost pressure to increase. Capacity of turbocharger are available in great range in the market which are designed to match the requirement. From structural point of view, key component of an automotive turbocharger is rotor. This rotor consists of compressor wheel, turbine wheel, shaft and bearing (journal/ball) mainly. In industries, design & development of turbocharger rotor for its dynamic characteristics is done using virtual engineering technique (Computer Aided Engineering). Multibody dynamic (MBD) analysis simulation is one of the best approaches which is used to study the rotor in great details. In this current MBD procedure fluid-structure interaction problem is solved by modelling oil film in the journal bearing and solving it using “Reynolds equation”.
Journal Article

Benefits and Application Bandwidth of Phenolic Piston Material in Opposed Piston Calipers

2019-09-15
2019-01-2123
The use of reinforced phenolic composite material in application to hydraulic pistons for brake calipers has been well established in the industry - for sliding calipers (and certain fixed calipers with high piston length to diameter ratios). For decades, customers have enjoyed lower brake fluid temperatures, mass savings, improved corrosion resistance, and smoother brake operation (less judder). However, some persistent concerns remain about the use of phenolic materials for opposed piston calipers. The present work explores two key questions about phenolic piston application in opposed piston calipers. Firstly, do opposed piston calipers see similar benefits? Do high performance aluminum bodied calipers, where the piston may no longer be a dominant heat flow path into the fluid (due to a large amount of conduction and cooling enabled by the housing), still enjoy fluid temperature reductions?
Technical Paper

Bowl Geometry Effects on Turbulent Flow Structure in a Direct Injection Diesel Engine

2018-09-10
2018-01-1794
Diesel piston bowl geometry can affect turbulent mixing and therefore it impacts heat-release rates, thermal efficiency, and soot emissions. The focus of this work is on the effects of bowl geometry and injection timing on turbulent flow structure. This computational study compares engine behavior with two pistons representing competing approaches to combustion chamber design: a conventional, re-entrant piston bowl and a stepped-lip piston bowl. Three-dimensional computational fluid dynamics (CFD) simulations are performed for a part-load, conventional diesel combustion operating point with a pilot-main injection strategy under non-combusting conditions. Two injection timings are simulated based on experimental findings: an injection timing for which the stepped-lip piston enables significant efficiency and emissions benefits, and an injection timing with diminished benefits compared to the conventional, re-entrant piston.
Technical Paper

CFD Analysis of Oil/Gas Flow in Piston Ring-Pack

2011-04-12
2011-01-1406
The oil consumption and blow-by are complex phenomena that need to be minimized to meet the ever changing modern emission standards. Oil flows from the sump to the combustion chamber and the blow-by gases flow from the combustion chamber to the crank case. There are several piston rings on the piston, which form a ring-pack. The ring pack has to be efficiently designed to minimize the oil consumption and blow-by. Since it is difficult and extremely costly to conduct experiments on every series of engines to check for the blow-by and oil consumption, a CFD analysis can be performed on the ring pack to study the blow-by and oil-consumption characteristics. In the CFD analysis described here, the region considered is between the compression chamber and the skirt, between the piston (including the rings) and the cylinder liner. The 3D CFD analysis was conducted for the engine running conditions of 5000 rpm and load of 13.5 kPa, for a 2.4L gasoline engine.
Journal Article

Characterization of Caliper Piston Material Stiffness and Damping

2013-09-30
2013-01-2050
The brake caliper piston plays a key role in caliper function, taking significant responsibility for qualities such as fluid consumption, insulation of the brake fluid from heat, seal rollback function, and brake torque variation sensitivity to disc thickness variation. It operates in a strenuous environment, being routinely subjected to high stresses and elevated temperatures. Given all of the demands on this safety-critical component (strength, stiffness, wear resistance, stable friction against rubber, thermal stability, machinability, manageable thermal conductivity, and more), there are actually relatively few engineering materials suitable for use as a caliper piston, and designs tend to be limited to steel, aluminum, and engineered plastics (phenolic composites). The lattermost - phenolic composites - has been of especial interest recently due to mass savings and possible reduction in brake corner judder sensitivity to disc thickness variation.
Technical Paper

Characterization of Embedded Debris Particles on Crankshaft Bearings

2024-04-09
2024-01-2594
Crankshaft bearings function to maintain the lubrication oil films needed to support crankshaft journals in hydrodynamic regime of rotation. Discontinuous oil films will cause the journal-bearing couple to be in a mixed or boundary lubrication condition, or even a bearing seizure or a spun bearing. This condition may further force the crankshaft to break and an engine shutdown. Spun bearings have been identified to be one of the top reasons in field returned engines. Excessive investigations have found large, embedded hard debris particles on the bearings are inevitably the culprit of destroying continuity of the oil films. Those particles, in particular the suspicious steel residues, in the sizes of hundreds of micrometers, are large enough to cause oil film to break, but rather fine and challenging for materials engineers to characterize their metallurgical features. This article presents the methodology and steps of debris analyses on bearings at different stages of engine build.
Technical Paper

Combustion Timing Control Based on First Modal Coefficients of Individual Cylinder Pressure Traces

2024-04-09
2024-01-2842
When an SI engine is equipped with individual cylinder pressure transducers, combustion timing of each cylinder can be precisely controlled by adjusting spark timing in real-time. In this paper, a novel method based on principal component analysis (PCA) is introduced to control the combustion timing with a significantly less computational burden than a conventional method.
Technical Paper

Combustion-Timing Control of Low-Temperature Gasoline Combustion (LTGC) Engines by Using Double Direct-Injections to Control Kinetic Rates

2019-04-02
2019-01-1156
Low-temperature gasoline combustion (LTGC) engines can provide high efficiencies and extremely low NOx and particulate emissions, but controlling the combustion timing remains a challenge. This paper explores the potential of Partial Fuel Stratification (PFS) to provide fast control of CA50 in an LTGC engine. Two different compression ratios are used (CR=16:1 and 14:1) that provide high efficiencies and are compatible with mixed-mode SI-LTGC engines. The fuel used is a research grade E10 gasoline (RON 92, MON 85) representative of a regular-grade market gasoline found in the United States. The fuel was supplied with a gasoline-type direct injector (GDI) mounted centrally in the cylinder. To create the PFS, the GDI injector was pulsed twice each engine cycle. First, an injection early in the intake stroke delivered the majority of the fuel (70 - 80%), establishing the minimum equivalence ratio in the charge.
Technical Paper

Comparison of Stochastic Pre-Ignition Behaviors on a Turbocharged Gasoline Engine with Various Fuels and Lubricants

2016-10-17
2016-01-2291
Stochastic pre-ignition (SPI) has been commonly observed in turbocharged spark-ignition direct-injection (SIDI) engines at low-speed and high-load conditions, which causes extremely high cylinder pressures that can damage an engine immediately or degrade the engine life. The compositions and properties of fuels and lubricants have shown a strong impact on SPI frequency. This study experimentally evaluated SPI behaviors on a 2.0-liter 4-cylinder turbocharged SIDI engine with China V market fuel and China fuel blended to US Tier II fuel specifications. China V market fuel showed significantly higher SPI frequency and severity than China blended US Tier II fuel, which was attributed to its lower volatility between 100 °C to 150 °C (or lower T60 to T90 in the distillation curve). Two different formulations of lubricant oils were also tested and their impact on SPI were compared.
Technical Paper

Constitutive Modeling and Thermomechanical Fatigue Life Predictions of A356-T6 Aluminum Cylinder Heads Considering Ageing Effects

2019-04-02
2019-01-0534
Cast aluminum alloys are frequently used as materials for cylinder head applications in internal combustion gasoline engines. These components must withstand severe cyclic mechanical and thermal loads throughout their lifetime. Reliable computational methods allow for accurate estimation of stresses, strains, and temperature fields and lead to more realistic Thermomechanical Fatigue (TMF) lifetime predictions. With accurate numerical methods, the components could be optimized via computer simulations and the number of required bench tests could be reduced significantly. These types of alloys are normally optimized for peak hardness from a quenched state that maximizes the strength of the material. However due to high temperature exposure, in service or under test conditions, the material would experience an over-ageing effect that leads to a significant reduction in the strength of the material.
Journal Article

Development and Validation of the SAE J3052 High Pressure Differential Flow Rate Recommended Practice

2017-09-17
2017-01-2498
This paper describes the development work that went into the creation of the SAE J3052 “Brake Hydraulic Component Flow Rate Measurement at High Delta Pressure”, and also shows some example applications. The SAE J3052 recommended practice is intended to measure flow characteristics through brake hydraulic components and subsystems driven by pressure differentials above 1 bar, and was anticipated by the task force to be invoked for components and subsystems for which pressure response characteristics are critical for the operation of the system (such as service brake pressure response and stopping distance, or pressure rise rate of a single hydraulic circuit in response to an Electronic Stability Control command). Data generated by this procedure may be used as a direct assessment of the flow performance of a brake hydraulic component, or they may be used to build subsystem or system-level models.
Journal Article

Downsized Boosted Dilute Combustion, Exhaust Compounded (DBDC+EC) Experimental Engine Design, Thermodynamic Model Comparison, and Performance Potential Predictions

2021-04-06
2021-01-0443
An experimental piston compounded engine was designed with guidance from thermodynamic modeling, then was built and tested to compare the model predictions to measured results. The piston-compounded concept has shown great potential for improvements in efficiency over current state-of-the-art light-duty engines through the use of an efficient second expansion process to more fully recover energy still present in the exhaust gasses, and was further developed into the Downsized Boosted Dilute Combustion, Exhaust Compounded (DBDC+EC) engine presented here. This paper documents some of the more unique design elements of this engine as well as a performance comparison between test data and modeling expectations. Ultimately, an experimental stoichiometric spark-ignited piston compounded engine was designed, five blocks were built, and collectively they were run for thousands of hours.
Journal Article

Downsized-Boosted Gasoline Engine with Exhaust Compound and Dilute Advanced Combustion

2020-04-14
2020-01-0795
This article presents experimental results obtained with a disruptive engine platform, designed to maximize the engine efficiency through a synergetic implementation of downsizing, high compression-ratio, and importantly exhaust-heat energy recovery in conjunction with advanced lean/dilute low-temperature type combustion. The engine architecture is a supercharged high-power output, 1.1-liter engine with two-firing cylinders and a high compression ratio of 13.5: 1. The integrated exhaust heat recovery system is an additional, larger displacement, non-fueled cylinder into which the exhaust gas from the two firing cylinders is alternately transferred to be further expanded. The main goal of this work is to implement in this engine, advanced lean/dilute low-temperature combustion for low-NOx and high efficiency operation, and to address the transition between the different operating modes.
X