Refine Your Search

Topic

Search Results

Technical Paper

Activity Based Approach to Manufacturing Systems Modeling

2010-04-12
2010-01-0277
This paper looks at a method for decomposing a manufactured product into what is called an “activity space.” The method uses an activity based costing scheme to structure the model and organize the information. It is discussed how the activity space is used to perform sustainability assessments of a manufactured product and the manufacturing process from different viewpoints and perspectives. The way in which the activity space is used to perform an assessment from several viewpoints is discussed.
Journal Article

Combustion Recession after End of Injection in Diesel Sprays

2015-04-14
2015-01-0797
This work contributes to the understanding of physical mechanisms that control flashback, or more appropriately combustion recession, in diesel sprays. A large dataset, comprising many fuels, injection pressures, ambient temperatures, ambient oxygen concentrations, ambient densities, and nozzle diameters is used to explore experimental trends for the behavior of combustion recession. Then, a reduced-order model, capable of modeling non-reacting and reacting conditions, is used to help interpret the experimental trends. Finally, the reduced-order model is used to predict how a controlled ramp-down rate-of-injection can enhance the likelihood of combustion recession for conditions that would not normally exhibit combustion recession. In general, fuel, ambient conditions, and the end-of-injection transient determine the success or failure of combustion recession.
Technical Paper

Design and Fabrication of Composite Attach Fitting for Satellite Launch Vehicle

1998-06-02
981837
Compressive load capacity of composite lattice structures are studied. The objective of this research is to investigate the buckling strength of composite lattice structures and to design the most weight efficient structure with the highest buckling load. Buckling strength of both the composite lattice cylindrical and conical shells under axial compressive loads are examined. The main emphasis is placed on the effects of geometric constraints and the optimal design of the structures. In this research, various constraints are studied and the optimal structure which gives the highest strength to weight ratio is obtained. Moreover, these structures can be constructed by filament winding, the manufacturing process can be automated, and the costs can be greatly reduced.
Technical Paper

Development of Response Surface Equations for High-Speed Civil Transport Takeoff and Landing Noise

1997-10-01
975570
As an element of a design optimization study of high speed civil transport (HSCT), response surface equations (RSEs) were developed with the goal of accurately predicting the sideline, takeoff, and approach noise levels for any combination of selected design variables. These RSEs were needed during vehicle synthesis to constrain the aircraft design to meet FAR 36, Stage 3 noise levels. Development of the RSEs was useful as an application of response surface methodology to a previously untested discipline. Noise levels were predicted using the Aircraft Noise Prediction Program (ANOPP), with additional corrections to account for inlet and exhaust duct lining, mixer-ejector nozzles, multiple fan stages, and wing reflection. The fan, jet, and airframe contributions were considered in the aircraft source noise prediction.
Technical Paper

Development of an Automated Part Loading and Unloading System for a Cylindrical Die Thread Roller

2007-09-17
2007-01-3916
This paper outlines the design of a part transport and loading/unloading automation system for a cylindrical die thread roller, enumerating many of the design decisions encountered. Specifically, a transport tray system is proposed and prototyped as a benchmark for factory automation. Details of an automation system which will interface with the proposed transport tray system are discussed. A gripping system which accommodates a wide variety of fastener head styles is developed to work in conjunction with the tray concept, and prototyped with favorable results.
Journal Article

Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D

2018-04-03
2018-01-0277
In order to improve understanding of the primary atomization process for diesel-like sprays, a collaborative experimental and computational study was focused on the near-nozzle spray structure for the Engine Combustion Network (ECN) Spray D single-hole injector. These results were presented at the 5th Workshop of the ECN in Detroit, Michigan. Application of x-ray diagnostics to the Spray D standard cold condition enabled quantification of distributions of mass, phase interfacial area, and droplet size in the near-nozzle region from 0.1 to 14 mm from the nozzle exit. Using these data, several modeling frameworks, from Lagrangian-Eulerian to Eulerian-Eulerian and from Reynolds-Averaged Navier-Stokes (RANS) to Direct Numerical Simulation (DNS), were assessed in their ability to capture and explain experimentally observed spray details. Due to its computational efficiency, the Lagrangian-Eulerian approach was able to provide spray predictions across a broad range of conditions.
Technical Paper

Exploration of Turbulent Atomization Mechanisms for Diesel Spray Simulations

2017-03-28
2017-01-0829
The atomization and initial spray formation processes in direct injection engines are not well understood due to the experimental and computational challenges associated with resolving these processes. Although different physical mechanisms, such as aerodynamic-induced instabilities and nozzle-generated turbulence and cavitation, have been proposed in the literature to describe these processes, direct validation of the theoretical basis of these models under engine-relevant conditions has not been possible to date. Recent developments in droplet sizing measurement techniques offer a new opportunity to evaluate droplet size distributions formed in the central and peripheral regions of the spray. There is therefore a need to understand how these measurements might be utilized to validate unobservable physics in the near nozzle-region.
Technical Paper

Georgia Tech's FutureTruck Split-Parallel Hybrid SUV Design

2003-03-03
2003-01-1270
The Georgia Tech FutureTruck Team has designed a strong parallel split-hybrid powertrain for the model year 2002 Ford Explorer SUV. The modified powertrain uses a Lincoln LS 3.0L, V-6, DOHC, aluminum engine driving the rear axle. An AC-150 from AC Propulsion is coupled to the front wheels through a 3.75:1 Auburn Gear speed reducer. This split-hybrid structure fits well into the Explorer and is to manufacture. The interior cabin has been maintained in a stock configuration by carefully integrating the added instrumentation and electric drive controls into the dash and console. The toque-blending hybrid electric control is designed to be charge sustaining such that the refueling procedures match those of the stock vehicle. When fully operational, this powertrain is expected to yield a net 25% increase in fuel efficiency while lowering emissions without any sacrifice in customer acceptability.
Technical Paper

MODELING AND CONTROL OF TRANSIENT ENGINE CONDITIONS

2001-10-01
2001-01-3231
In gasoline direct injection engines, fuel is injected into the port walls and the valve. During the engine startup cycle, the temperature of these parts is not adequate to evaporate all the fuel that impacts the walls. As a result, a fraction of the injected fuel does not contribute to the combustion cycle. This fraction forms fuel puddles (wall-wetting) and a portion of it passes to the crankcase. The efficiency of the engine during the startup cycle is decreased and hydrocarbon emissions increased. It is obvious that a control strategy is necessary to minimize the effects of this transient performance of the engine. This paper investigates a modeling framework for the valve, and simulation results validate model performance when compared to available experimental data. The simulation studies lead to a conceptual control design, which is briefly outlined.
Technical Paper

Method for the Exploration of Cause and Effect Links and Derivation of Causal Trees from Accident Reports

1999-04-13
1999-01-1433
The ultimate goal of knowledge-based aircraft design, pilot training and flight operations is to make flight safety an inherent, built-in feature of the flight vehicle, such as its aerodynamics, strength, economics and comfort are. Individual flight accidents and incidents may vary in terms of quantitative characteristics, circumstances, and other external details. However, their cause-and-effect patterns often reveal invariant structure or essential causal chains which may re-occur in the future for the same or other vehicle types. The identification of invariant logical patterns from flight accident reports, time-histories and other data sources is very important for enhancing flight safety at the level of the ‘pilot - vehicle -operational conditions’ system. The objective of this research project was to develop and assess a method for ‘mining’ knowledge of typical cause-and-effect patterns from flight accidents and incidents.
Technical Paper

Methodology for the Parametric Structural Conceptual Design of Hypersonic Vehicles

2000-10-10
2000-01-5618
The design of hypersonic vehicles is influenced by tightly coupled interactions between aerodynamics, propulsion, and structures. Therefore, in the conceptual design phases, the identification and mitigation of potential problem areas and disciplinary interrelations are critical. Although the multidisciplinary character of hypersonic designs is well known, research in hypersonics is primarily focused on the isolated disciplines with side notes on the interactions. The designer has to integrate all the disciplinary information and create a successful system. This integration is a tedious and elaborate process involving time-consuming iterations. This paper proposes a new approach and entails the creation of Response Surface Equations from the various constituent disciplines considered. This method allows to quickly assess the implication of design decisions at the top level using the multiple disciplinary meta-models.
Technical Paper

On-Line Identification of End Milling Cutter Runout

1996-05-01
961638
Cutter runout has been a target for monitoring and control of machining processes in view of the constraint it places on the achievable productivity. Off-line metrology based on various displacement probes such as dial indicators or proximity sensors provides information regarding the runout characteristics in a non-cutting state. However, during the actual process of machining off-line calibrations often become irrelevant since the cutting parameters and machining configuration significantly affect the behavior of runout. This paper presents a methodology of in-process identification of cutter runout in end milling based on the analysis of cutting forces. The presence of cutter runout generates cutting force components at one spindle frequency above and below the tooth passing frequency.
Technical Paper

Quantifying the Life Cycle Water Consumption of a Passenger Vehicle

2012-04-16
2012-01-0646
Numerous studies have pointed out the growing need to assess the availability of water sources in numerous regions around the world as future forecasts suggest that water demands will increase significantly while freshwater resources are being depleted. In this paper, we highlight the difference between water use versus consumption and analyze the life-cycle water consumption of a car from material extraction through production, use, and final disposition/end of life and determine a car's water footprint using data from the EcoInvent database as well as data collected from literature sources. Although water use is typically metered at the factory level, water consumption (i.e., water lost through evaporation and/or incorporation into a material, part, and/or product) is much harder to quantify. As shown in this paper, the difference can be an order of magnitude or more.
Technical Paper

Real-Time Integrated Economic and Environmental Performance Monitoring of a Production Facility

2001-03-05
2001-01-0625
In this paper, we describe our work and experiences with integrating environmental and economic performance monitoring in a production facility of Interface Flooring Systems, Inc. The objective of the work is to create a ‘dashboard’ that integrates environmental and economic monitoring and assessment of manufacturing processes, and provides engineers and managers an easy to use tool for obtaining valid, comparable assessment results that can be used to direct attention towards necessary changes. To this purpose, we build upon existing and familiar cost management principles, in particular Activity-Based Costing and Management (ABC&ABM), and we extend those into environmental management in order to obtain a combined economic and environmental performance measurement framework (called Activity-Based Cost and Environmental Management).
Technical Paper

Scale Similarity Analysis of Internal Combustion Engine Flows—Particle Image Velocimetry and Large-Eddy Simulations

2018-04-03
2018-01-0172
This presentation is an assessment of the turbulence-stress scale-similarity in an IC engine, which is used for modeling subgrid dissipation in LES. Residual stresses and Leonard stresses were computed after applying progressively smaller spatial filters to measured and simulated velocity distributions. The velocity was measured in the TCC-II engine using planar and stereo PIV taken in three different planes and with three different spatial resolutions, thus yielding two and three velocity components, respectively. Comparisons are made between the stresses computed from the measured velocity and stress computed from the LES resolved-scale velocity from an LES simulation. The results present the degree of similarity between the residual stresses and the Leonard stresses at adjacent scales. The specified filters are systematically reduced in size to the resolution limits of the measurements and simulation.
Journal Article

Security Analysis of Android Automotive

2020-04-14
2020-01-1295
In-vehicle infotainment (IVI) platforms are getting increasingly connected. Besides OEM apps and services, the next generation of IVI platforms are expected to offer integration of third-party apps. Under this anticipated business model, vehicular sensor and event data can be collected and shared with selected third-party apps. To accommodate this trend, Google has been pushing towards standardization among proprietary IVI operating systems with their Android Automotive platform which runs natively on the vehicle’s IVI platform. Unlike Android Auto’s limited functionality of display-projecting certain smartphone apps to the IVI screen, Android Automotive will have access to the in-vehicle network (IVN), and will be able to read and share various vehicular sensor data with third-party apps. This increased connectivity opens new business opportunities for both the car manufacturer as well as third-party businesses, but also introduces a new attack surface on the vehicle.
Journal Article

Sustainable Manufacturing Analysis using an Activity Based Object Oriented Method

2009-11-10
2009-01-3229
This article begins by describing the need for a new method and tool for performing a sustainability assessment for manufacturing processes and systems. A brief literature survey is done to highlight the major existing methods and tools, their function, and their shortcomings. The article goes on to describe the general approach of the method before describing a computer aided tool that has been developed to implement the method. The article concludes with a walk through of a generic use case that describes where such a method would be useful and how such a tool would be implemented.
Technical Paper

Technology Impact Forecasting for a High Speed Civil Transport

1998-09-28
985547
This paper outlines a comprehensive, structured, and robust methodology for decision making in the early phases ofaircraft design. The proposed approach is referred to as the Technology Identification, Evaluation, and Selection (TIES) method. The seven-step process provides the decision maker/designer with an ability to easily assess and trade-off the impact of various technologies in the absence of sophisticated, time-consuming mathematical formulations. The method also provides a framework where technically feasible alternatives can be identified with accuracy and speed. This goal is achieved through the use of various probabilistic methods, such as Response Surface Methodology and Monte Carlo Simulations. Furthermore, structured and systematic techniques are utilized to identify possible concepts and evaluation criteria by which comparisons could be made.
Journal Article

Technology Selection for Optimal Power Distribution Efficiency in a Turboelectric Propulsion System

2012-10-22
2012-01-2180
Turboelectric propulsion is a technology that can potentially reduce aircraft noise, increase fuel efficiency, and decrease harmful emissions. In a turbo-electric system, the propulsor (fans) is no longer connected to the turbine through a mechanical connection. Instead, a superconducting generator connected to a gas turbine produces electrical power which is delivered to distributed fans. This configuration can potentially decrease fuel burn by 10% [1]. One of the primary challenges in implementing turboelectric electric propulsion is designing the power distribution system to transmit power from the generator to the fans. The power distribution system is required to transmit 40 MW of power from the generator to the electrical loads on the aircraft. A conventional aircraft distribution cannot efficiently or reliably transmit this large amount of power; therefore, new power distribution technologies must be considered.
Technical Paper

The Flying Carpet: Aerodynamic High-Altitude Solar Reflector Design Study

2017-09-19
2017-01-2026
Our concept studies indicate that a set of reflectors floated in the upper atmosphere can efficiently reduce radiant forcing into the atmosphere. The cost of reducing the radiant forcing sufficiently to reverse the current rate of Global Warming, is well within reach of global financial resources. This paper summarizes the overall concept and focuses on one of the reflector concepts, the Flying Carpet. The basic element of this reflector array is a rigidized reflector sheet towed behind and above a solar-powered, distributed electric-propelled flying wing. The vehicle rises above 30,480 m (100,000 ft) in the daytime by solar power. At night, the very low wing loading of the sheets enables the system to stay well above the controlled airspace ceiling of 18,288 m (60,000 ft). The concept study results are summarized before going into technical issues in implementation. Flag instability is studied in initial wind tunnel experiments.
X