Refine Your Search

Topic

Author

Search Results

Journal Article

Additional Comparison of Iced Aerodynamic Measurements on a Swept Wing from Two Wind Tunnels

2019-06-10
2019-01-1986
Artificial ice shapes of various geometric fidelity were tested on a wing model based on the Common Research Model. Low Reynolds number tests were conducted at Wichita State University’s Walter H. Beech Memorial Wind Tunnel utilizing an 8.9% scale model, and high Reynolds number tests were conducted at ONERA’s F1 wind tunnel utilizing a 13.3% scale model. Several identical geometrically-scaled ice shapes were tested at both facilities, and the results were compared at overlapping Reynolds and Mach numbers. This was to ensure that the results and trends observed at low Reynolds number could be applied and continued to high, near-flight Reynolds number. The data from Wichita State University and ONERA F1 agreed well at matched Reynolds and Mach numbers. The lift and pitching moment curves agreed very well for most configurations.
Technical Paper

Advances in Real-Time Monitoring of Acoustic Emissions

1997-06-03
972254
We are developing a flexible and general methodology for real-time monitoring of acoustic emissions in machining applications. The goal of this work is to develop an approach to in-process monitoring which allows continuous assessment of tool wear and early warning of process exceptions. The nature of metal removal processes creates short-lived vibrations that carry information about the condition of the cutting tool and quality of cut. We wish to extract and represent these transient events without loss of important spectral structure. Other challenges include the need for system training data selection in the absence of expert labeled data, the modeling of short-term time evolution, and efficient real-time operation on an inexpensive computing platform.
Technical Paper

Artifact vs. Anatomy: Dealing with Conflict of Geometric Modeling Descriptions

2007-06-12
2007-01-2450
In applications ranging from design of customized vehicle interiors to virtual testing of biomedical devices, the processes of modeling, design and analysis involve the simultaneous treatment of artifacts (i.e., parts designed by humans) and anatomical structures. An inherent conflict arises because the geometric descriptions are completely different. Artifact descriptions are typically the output of computer-aided design (CAD) software and consist of a collection of parametric patches that comprise the boundary of the artifact. In stark contrast, the native description of an anatomical structure typically consists of an image stack obtained using a volumetric scanning technology such as computed tomography (CT) or magnetic resonance imaging (MRI). Current practice for simultaneously dealing with both categories of entities involves working primarily in the world of CAD.
Technical Paper

AutoDSS: A System Level KBE Tool for Vehicle Product Definition

2000-03-06
2000-01-1351
A key to shortening the design cycle is to shorten the initial or conceptual design phase. An enabling technology towards this goal is an architecture called the Design Support System (DSS), which is based on the virtual prototype concept. The DSS combines knowledge with hardware and software into a system that is a model for the design process. It produces a virtual prototype of the design and maintains an intelligent design document, which is automatically updated during the design process. A design domain dependent version for automotive design, known as “Automobile Design Support System” (AutoDSS) was developed in the CADTECH Research Lab at the University of Washington.
Technical Paper

Automatic Wildfire Detection and Simulation using Optical Information from Unmanned Aerial Systems

2015-09-15
2015-01-2474
In many parts of the world, uncontrolled fires in sparsely populated areas are a major concern as they can quickly grow into large and destructive conflagrations in short time spans. Detecting these fires has traditionally been a job for trained humans on the ground, or in the air. In many cases, these manned solutions are simply not able to survey the amount of area necessary to maintain sufficient vigilance and coverage. This paper investigates the use of unmanned aerial systems (UAS) for automated wildfire detection. The proposed system uses low-cost, consumer-grade electronics and sensors combined with various airframes to create a system suitable for automatic detection of wildfires. The system employs automatic image processing techniques to analyze captured images and autonomously detect fire-related features such as fire lines, burnt regions, and flammable material.
Technical Paper

Comparing the Whole Body Vibration Exposures across Three Truck Seats

2017-06-05
2017-01-1836
Whole-body vibration (WBV) is associated with several adverse health and safety outcomes including low-back pain (LBP) and driver fatigue. The objective of this study was to evaluate the efficacy of three commercially-available air-suspension truck seats for reducing truck drivers’ exposures to WBV. Seventeen truck drivers operating over a standardized route were recruited for this study and three commercially-available air suspension seats were evaluated. The predominant, z-axis average weighted vibration (Aw) and Vibration Dose Values (VDV) were calculated and normalized to represent eight hours of truck operation. In addition, the Seat Effective Amplitude Transmissibility (SEAT), the ratio of the seat-measured vibration divided by the floor-measured vibration, was compared across the three seats. One seat had significantly higher on-road WBV exposures whereas there were no differences across seats in off-road WBV exposures.
Technical Paper

Comparison of Measurement Methods for Evaluating Displacement of Commercial Vehicle Seats

2019-06-05
2019-01-1481
Measuring the displacements in vehicle seat suspensions and the displacements the seat has to absorb may assist vehicle seat designers in better designing seats to absorb vibrations. Low frequency seat displacement is important in seat design to identify end-stop events and higher frequency shorter displacements are also important since seat components can be optimized to absorb these smaller displacements. Displacements can be directly measured with special instruments, but it would be less complicated if simple, compact accelerometers could be used to measure the seat displacements. This paper compares accelerometer-derived displacement measurements to known displacements derived from sinusoidal physics and field measured random displacements measured with potentiometers. Using known, controlled sinusoidal displacements, three lab-based experiments were conducted to determine how well accelerometers, using double integration, could measure displacements.
Technical Paper

Controls Development and Vehicle Refinement for a 99% Showroom Ready Parallel Through the Road Plug-In Hybrid Electric

2014-10-13
2014-01-2906
This paper details the control system development process for the University of Washington (UW) EcoCAR 2 team over the three years of the competition. Particular emphasis is placed upon the control system development and validation process executed during Year 3 of the competition in an effort to meet Vehicle Technical Specifications (VTS) established and refined by the team. The EcoCAR 2 competition challenges 15 universities across North America to reduce the environmental impact of a 2013 Chevrolet Malibu without compromising consumer acceptability. The project takes place over a three year design cycle, where teams select a hybrid architecture and fuel choice before defining a set of VTS goals for the vehicle. These VTS are selected based on the desired static and dynamic performance targets to balance fuel consumption and emissions with consumer acceptability requirements.
Journal Article

Design Tradeoffs: The Social Costs of Vehicle Fire Protection

2012-04-16
2012-01-0985
Rational design for fire safety necessarily includes consideration of risk tradeoffs that tend to reduce one risk but may increase another. Traditional engineering design criteria can be supplemented with important factors that rely on expertise from other disciplines. Engineering analysis may be able to address reduction in fire risk due to the introduction of new technology, but may not address the social costs associated with this new technology. For example, the resultant increase in vehicle cost may prevent some people from purchasing a vehicle (impacting individuals' lives), may reduce the number of vehicles sold (impacting manufacturers), and may reduce taxes collected (impacting the government). This must be weighed against decreased risk of property damage, injury, and fatality due to fire. In this paper, the methods of benefit-cost analysis from economics were applied to make this evaluation.
Technical Paper

Development of a Parallel through the Road Plug-In Hybrid Electric Vehicle

2012-09-10
2012-01-1767
The University of Washington Advanced Vehicle Works team is currently in the process of designing Plug-in Hybrid Electric Vehicle (PHEV) for the EcoCAR2 Challenge. This competition challenges 15 universities across North America to reduce the environmental impact of a 2013 Chevrolet Malibu without compromising consumer acceptability. The architecture chosen by the team to address these goals is a Parallel Through The Road (PTTR) PHEV which provides all electric operation to displace petroleum usage, four wheel drive mode to improve utility performance for consumers, and effective charge-sustaining operation. The PTTR architecture is the lowest cost architecture to provide all of these benefits, and it does so without compromising safety performance of the platform.
Technical Paper

ESS Design Process Overview and Key Outcomes of Year Two of EcoCAR 2: Plugging in to the Future

2014-04-01
2014-01-1922
EcoCAR 2: Plugging in to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 30 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The EcoCAR 2 VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles.
Technical Paper

Experimental Aerodynamic Simulation of Glaze Ice Accretion on a Swept Wing

2019-06-10
2019-01-1987
Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing was carried out for 8.9% and 13.3% scale semispan wing models based upon the Common Research Model airplane configuration. Various levels of geometric fidelity of an artificial ice shape representing a realistic glaze-ice accretion on a swept wing were investigated. The highest fidelity artificial ice shape reproduced all of the three-dimensional features associated with the glaze ice accretion. The lowest fidelity artificial ice shapes were simple, spanwise-varying horn ice geometries intended to represent the maximum ice thickness on the wing upper surface.
Journal Article

Experimental Aerodynamic Simulation of a Scallop Ice Accretion on a Swept Wing

2019-06-10
2019-01-1984
Understanding the aerodynamic impact of swept-wing ice accretions is a crucial component of the design of modern aircraft. Computer-simulation tools are commonly used to approximate ice shapes, so the necessary level of detail or fidelity of those simulated ice shapes must be understood relative to high-fidelity representations of the ice. Previous tests were performed in the NASA Icing Research Tunnel to acquire high-fidelity ice shapes. From this database, full-span artificial ice shapes were designed and manufactured for both an 8.9%-scale and 13.3%-scale semispan wing model of the CRM65 which has been established as the full-scale baseline for this swept-wing project. These models were tested in the Walter H. Beech wind tunnel at Wichita State University and at the ONERA F1 facility, respectively. The data collected in the Wichita St.
Technical Paper

Exploring the Space of Human Body Shapes: Data-driven Synthesis under Anthropometric Control

2004-06-15
2004-01-2188
In this paper, we demonstrate a system for synthesizing high-resolution, realistic 3D human body shapes according to user-specified anthropometric parameters. We begin with a corpus of whole-body 3D laser range scans of 250 different people. For each scan, we warp a common template mesh to fit each scanned shape, thereby creating a one-to-one vertex correspondence between each of the example body shapes. Once we have a common surface representation for each example, we then use principal component analysis to reduce the data storage requirements. The final step is to relate the variation of body shape with concrete parameters, such as body circumferences, point-to-point measurements, etc. These parameters can then be used as “sliders” to synthesize new individuals with the required attributes, or to edit the attributes of scanned individuals.
Technical Paper

Fatty Acid Compositions of Solvent Extracted Lipids from Two Microalgae

2009-11-10
2009-01-3236
Oil extracted from microalgae has the potential to offset demand for petroleum, if conditions of cost and scale can be met. In this paper, we present the compositional differences of fatty acid methyl esters (FAMEs) obtained by solvent extraction from two different oleaginous microalgae. Oil samples were extracted from a proprietary alga (Alga X) and a more common Nannochloropsis oculata (NC) using the Soxhlet process with n-hexane. The neutral lipids contained in Alga X comprised approximately 40 to 60% of the algal dry weight, and the oil was mostly converted to methyl esters using a transesterification process. On the other hand, NC produced approximately 25% lipids, but the yield of methyl esters was often less than 1% and subject to high variation. FAMEs were analyzed using gas chromatography and the average chain lengths for NC were shown to be greater than the average chain lengths for Alga X.
Technical Paper

High Efficiency Energy Conversion Systems for Liquid Nitrogen Automobiles

1998-08-11
981898
This investigation of the use of cryogens as energy storage media for zero emission vehicles has found that using liquid nitrogen to liquefy the working fluids of one or more closed Rankine power cycles can be an effective means for increasing motive power. System configurations are presented which can realize over 50% of the availability of liquid nitrogen without relying on isothermal expanders. A zero emission vehicle utilizing such a propulsion system would have an energy storage reservoir that can be refilled in a matter of minutes and a range comparable to that of a conventional automobile.
Technical Paper

Improving Fuel Economy of Thermostatic Control for a Series Plugin-Hybrid Electric Vehicle Using Driver Prediction

2016-04-05
2016-01-1248
This study investigates using driver prediction to anticipate energy usage over a 160-meter look-ahead distance for a series, plug-in, hybrid-electric vehicle to improve conventional thermostatic powertrain control. Driver prediction algorithms utilize a hidden Markov model to predict route and a regression tree to predict speed over the route. Anticipated energy consumption is calculated by integrating force vectors over the look-ahead distance using the predicted incline slope and vehicle speed. Thermostatic powertrain control is improved by supplementing energy produced by the series generator with regenerative braking during events where anticipated energy consumption is negative, typically associated with declines or decelerations.
Technical Paper

Likelihood of Lumbar Spine Injuries for Far-side Occupants in Low to Moderate Speed Lateral Impacts

2014-04-01
2014-01-0494
Previous studies have shown that occupant kinematics in lateral impacts are different for near- and far-side occupants. Additionally, injuries to far-side occupants in high-speed lateral impacts have been better documented in the scientific literature; few studies have looked at low-speed far-side occupants. The purpose of this study was to determine the risk of lumbar spine injury for restrained and unrestrained far-side occupants in low- to moderate- speed lateral impacts. The NASS/CDS database was queried for far-side occupants in lateral impacts for different levels of impact severity (categorized by Delta-V): 0 to 8 km/h, 8 to 16 km/h, 16 to 24 km/h and 24 to 32 km/h. To further understand the lumbar spine injuries sustained by occupants in real-world impacts, far-side lateral impact tests with ATDs from the NHTSA Biomechanics Test Database were used to estimate lumbar loads in generic far-side sled tests.
Technical Paper

Low-Energy Seat Compression: Characterizing Stiffness in Different Vehicles

2020-04-14
2020-01-0527
In rear-end collisions, occupants move rearward relative to the vehicle interior, while compressing the seatback. In low-energy impacts, the stiffness of the non-frame seat components may influence the kinematic response of an occupant. Previous research has reported seat stiffness from experiments for a limited number of seats. Because passenger vehicle seats have evolved, this current work reports a range of seat stiffnesses for modern passenger vehicles. A portable measuring device to characterize vehicle seat stiffness was built to accommodate a wide range of vehicle types. The device measured simultaneously the force applied to the seat and the displacement of the seat cushion. Seats of sedans, crossovers, sport utility vehicles, minivans, and pickup trucks for model years between 2016 and 2020 were tested using the device. For each seat, three measurements were taken for four different seat regions: upper seatback, lower seatback, aft seat bottom and fore seat bottom.
Technical Paper

Map Matching with Travel Time Constraints

2007-04-16
2007-01-1102
Map matching determines which road a vehicle is on based on inaccurate measured locations, such as GPS points. Simple algorithms, such as nearest road matching, fail often. We introduce a new algorithm that finds a sequence of road segments which simultaneously match the measured locations and which are traversable in the time intervals associated with the measurements. The time constraint, implemented with a hidden Markov model, greatly reduces the errors made by nearest road matching. We trained and tested the new algorithm on data taken from a large pool of real drivers.
X