Refine Your Search

Topic

Author

Search Results

Technical Paper

3D Numerical Simulation of Fuel injection and Combustion Phenomena in DI Diesel Engines

1989-02-01
890668
Recently the analysis of air-fuel mixing and combustion has become important under the stringent emissions regulations of diesel engines. In the case of gasoline engines, the KIVA computer program has been developed and used for the analysis of combustion. In this paper, the calculations of combustion phenomena in DI diesel engines are performed by modifying the KIVA program so as to be applicable to multi-hole nozzles and arbitrary patterns of injection rate. The thermophysical and ther-mochemical properties of gasoline are altered to those diesel fuel. In order to investigate the ability of this modified program, the calculations are compared with the experiments on single cylinder engines concerning the pressure, flame temperature and mass change of chemical species in cylinders. Furthermore, the calculation for the heavy duty DI diesel engine is performed with this diesel combustion program.
Technical Paper

A Study of the Rankine Cycle Generating System for Heavy Duty HV Trucks

2014-04-01
2014-01-0678
In heavy duty (HD) trucks cruising on expressway, about 60% of input fuel energy is wasted as losses. So it is important to recover them to improve fuel economy of them. As a waste heat recovery system, a Rankine cycle generating system was selected. And this paper mainly reports it. In this study, engine coolant was determined as main heat source, which collected energies of an engine cooling, an EGR gas and an exhaust gas, for collecting stable energy as much as possible. And the exergy of heat source was raised by increase coolant temperature to 105 deg C. As for improving the system efficiency, saturation temperature difference was expanded by improving performance of heat exchanger and by using high pressure turbine. And a recuperator which exchanges heat in working fluid between expander outlet and evaporator inlet was installed to recover the heat of working fluid at turbine generator. Then a working fluid pump was improved to reduce power consumption of the system.
Technical Paper

A Study on Combustion of High Pressure Fuel Injection for Direct Injection Diesel Engine

1988-02-01
880422
Characteristics of diesel combustion with high pressure fuel injection were investigated, using a supercharged and charge air cooled single cylinder engine. Observation and analysis of combustion was performed using high speed schlieren photography at a definite low level NOx emission, while varying the parameters of both injection pressure and swirl ratio. Engine performance at a high injection pressure was evaluated in combination with shallow dish type combustion chamber and 8 hole nozzle. Two different intake ports (higher and lower swirl ratio) were used for the evaluation. Conventional injection system in combination with toroidal cavity and 4 hole nozzle was compared as a base line. It is generally said that quiescent combustion system is suitable for higher injection pressure configuration. According to the observed result of combustion photographs, however, higher swirl ratio shows better mixing than a lower swirl ratio, which was also confirmed by the performance test.
Technical Paper

A Study on Reducing Cooling loss in a Partially Insulated Piston for Diesel Engine

2018-04-03
2018-01-1276
To improve the thermal efficiency of an engine, it is particularly important to reduce the cooling loss from the combustion gas to the combustion chamber wall, which constitutes a major proportion of the total loss [1]. Previous studies addressing cooling loss reduction attempted to use ceramic in place of the conventional aluminum or iron alloys, but this led to a reduction in the volumetric efficiency and increased smoke emissions. This was caused by the ceramics having both a low thermal conductivity and high heat capacity, relative to aluminum and iron. These characteristics cause the piston wall temperature, which rises during combustion, to remain high during the intake stroke, thus increasing the intake temperature and reducing the volumetric efficiency. This increases the smoke emissions [2].
Technical Paper

A Study on the Effects of a Higher Compression Ratio in the Combustion Chamber on Diesel Engine Performance

2016-04-05
2016-01-0722
In order to improve the brake thermal efficiency of the engine, such as cooling and friction losses from the theoretical thermal efficiency, it is necessary to minimize various losses. However, it is also essential to consider improvements in theoretical thermal efficiency along with the reduction of the various losses. In an effort to improve the brake thermal efficiency of heavy-duty diesel engines used in commercial vehicles, this research focused on two important factors leading to the engine's theoretical thermal efficiency: the compression ratio and the specific heat ratio. Based on the results of theoretical thermodynamic cycle analyses for the effects of the above two factors, it was predicted that raising the compression ratio from a base engine specification of 17 to 26, and increasing the specific heat ratio would lead to a significant increase in theoretical thermal efficiency.
Technical Paper

A Study on the Mechanism of Engine Oil Consumption- Oil Upwards Transport via Piston Oil Ring Gap -

2011-04-12
2011-01-1402
Reduction of oil consumption of engines is required to avoid a negative effect on engine after treatment devices. Engines are required fuel economy for reduction of carbon-dioxide emission, and it is known that reduction of piston frictions is effective on fuel economy. However friction reduction of pistons sometimes causes an increase in engine oil consumption. Therefore reduction of engine oil consumption becomes important subject recently. The ultimate goal of this study is developing the estimation method of oil consumption, and the mechanism of oil upward transport at oil ring gap was investigated in this paper. Oil pressure under the oil ring lower rail was measured by newly developed apparatus. It was found that the piston slap motion and piston up and down motion affected oil pressure rise under the oil ring and oil was spouted through ring-gap by the pressure. The effect of the piston design on the oil pressure generation was also investigated.
Technical Paper

A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines - 3rd Report: Effect of Piston Motion on Piston Skirt Oil Film Behavior

2006-10-16
2006-01-3349
The necessity of the reduction of the lubricating oil consumption of diesel engines has been increasing its importance to reduce the negative effect of exhausted oil on after treatment devices for exhausted gas. The final purpose of the studies is clarifying the mechanism of the oil consumption and developing the method of its estimation. For the basic study, the mechanism of oil film generation on the piston skirt could be explained by hydrodynamic lubrication in our first and second reports [1, 2]. In this paper, the piston skirt was calculated using the measured piston motion to clarify the effect of the piston motion to the piston skirt oil film behavior.
Technical Paper

A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines - 4th Report: The Measurement of Oil Pressure Under the Piston Oil Ring -

2006-10-16
2006-01-3440
Clarifying the mechanism of the oil consumption of engines is necessary for developing its estimation method. Oil moves upwards on the piston to the combustion chamber through ring sliding surfaces, ring backs and ring gaps. The mechanisms of oil upwards transport through the ring gaps are hardly analyzed. In this report, oil pressure just under the oil ring was successfully measured by newly developed method to clarify the oil transport mechanism at the ring gap. It was showed that the generated oil pressure pushed up the oil at the ring gap.
Technical Paper

A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines -1st report: The Effect of the Design of Piston Skirt on Lubricating Oil Consumption-

2005-05-11
2005-01-2169
Decrease of engine lubricating oil consumption is necessary to reduce environmental impact. Usually oil consumption is estimated experimentally at the engine development stage, and it is expensive in terms of both time and cost. Therefore it is essential to develop its calculation method. The purposes of this study are clarifying the mechanism of engine lubricating oil consumption and developing the calculation method for the estimation of oil consumption. In this report, oil film on the piston skirt, which affected on oil volume supplied to the oil ring, was observed. Furthermore the effect of piston skirt design on oil consumption was investigated. Findings showed that the splashed oil on the cylinder liner had much effect on the oil film on the piston skirt hence oil consumption. It was suggested that the splashed oil on the cylinder liner affected on supply oil volume and it should be considered in the calculation of oil consumption.
Technical Paper

Advanced Boost-up in Hino EP100-II Turbocharged and Charge-Cooled Diesel Engine

1987-02-01
870298
Hino Motors, Ltd. has added to its line of charge-cooled engines for heavy duty trucks a higher power version which is called EP100-II. To meet the recent customers' demands for rapid transportation with better fuel economy, this engine was developed on the uprating program for the original EP100 which was introduced in 1981 as the first Japanese turbo-charged and air to air chrge-cooled engine. EP100-II has the same displacement as the original EP100, 8.8 liters, and is an in-line six cylinder engine with 228kW (310PS)/2,100rpm (JIS) output that provides the world's utmost level specific output of 25.8 kW (35.1PS)/ liter. Also this engine achieved a maximum BMEP of 16.8 bar/1,300 rpm and best BSFC of 199 gr/kWh at 1,500 rpm. This paper describes the advanced technology for increasing horsepower and improving fuel consumption such as the so-called multi harmonized inertia charging system, the electronically controlled waste gate valve of turbocharger.
Technical Paper

Characteristics of Diesel Engine Oil for Heavy Duty Commercial Vehicles Achieving for both Fuel Economy and Reliability

2019-12-19
2019-01-2243
When the engine oil evaporates in the crankcase, it is necessary to discharge to the outside of the engine or returns to the intake air as part of blow-by gas. The amount of oil content in the blow-by gas is preferable to be as small as possible. This paper researched the evaporation characteristics of diesel engine oil for heavy duty into blow-by gas using 5W-30 and 10W-30 engine oils with the equivalent to Noack. As a result, it is found that evaporate phenomenon cannot be explained well enough by just Noack and clarified of the oil evaporation mechanism in blow-by gas.
Technical Paper

Characteristics of Diesel Soot Suppression with Soluble Fuel Additives

1987-09-01
871612
Experiments on a large number of soluble fuel additives were systematically conducted for diesel soot reduction. It was found that Ca and Ba were the most effective soot suppressors. The main determinants of soot reduction were: the metal mol-content of the fuel, the excess air factor, and the gas turbulence in the combustion chamber. The soot reduction ratio was expressed by an exponential function of the metal mol-content in the fuel, depending on the metal but independent of the metal compound. A rise in excess air factor or gas turbulence increased the value of a coefficient in the function, resulting in larger reductions in soot with the fuel additives. High-speed soot sampling from the cylinder showed that with the metal additive, the soot concentration in the combustion chamber was substantially reduced during the whole period of combustion. It is thought that the additive acts as a catalyst not only to improve soot oxidation but also to suppress soot formation.
Technical Paper

Combustion Optimization by Means of Common Rail Injection System for Heavy-Duty Diesel Engines

1998-10-19
982679
This paper describes the combustion optimizations of heavy-duty diesel engines for the anticipated future emissions regulations by means of an electronically controlled common rail injection system. Tests were conducted on a turbocharged and aftercooled (TCA) prototype heavy-duty diesel engine. To improve both NOx-fuel consumption and NOx-PM trade-offs, fuel injection characteristics including injection timing, injection pressure, pilot injection quantity, and injection interval on emissions and engine performances were explored. Then intake swirl ratio and combustion chamber geometry were modified to optimize air-fuel mixing and to emphasize the pilot injection effects. Finally, for further NOx reductions, the potentials of the combined use of EGR and pilot injection were experimentally examined. The results showed that the NOx-fuel consumption trade-off is improved by an optimum swirl ratio and combustion chamber geometry as well as by a new pilot concept.
Technical Paper

Development of Fuel Economy Engine Oil for Heavy Duty Diesel Engine

2015-09-01
2015-01-2034
More stringent emissions regulations, fuel economy standards, and regulations are currently being discussed to help reduce both CO2 and exhaust emissions. Vehicle manufacturers have been developing new engine technologies, such as downsizing and down-speeding with reduced friction loss, improved engine combustion and efficiency, heat loss recycling, power-train friction loss recycling, and reduced power-train friction loss. The use of more efficient fuel economy 5W-30 engine oils for heavy duty commercial vehicles has started to expand since 2009 in Japan as one technological solution to help reduce CO2 emissions. However, fuel economy 5W-30 oils for use in heavy duty vehicles in Europe are mainly based on synthetic oils, which are much expensive than the mineral oils that are predominantly used in Japan.
Technical Paper

Development of Hino Turbocharged Diesel Engines

1984-02-01
840015
A historical review of Japanese turbocharged diesel engines for heavy duty vehicles is described, and newly developed turbocharged diesel engines of HINO are introduced. The design features of these engines include new turbocharging technologies such as highly backward curved impeller for compressor blade, variable controlled inertia charging and waste gate. Laboratory and field test results demonstrated better fuel economy and improved low speed and transient torque characteristics than the predecessors. Several operational experiences, technical analysis and reliability problems are discussed.
Technical Paper

Development of J-Series Engine and Adoption of Common-Rail Fuel Injection System

1997-02-24
970818
Hino has developed new J-series medium-duty diesel engines for trucks and buses. The new J-series comprises four, five and six-cylinder engines with the same cylinder bore and stroke and with both naturally aspirated and charge air cooled. Both output and torque have been enhanced along with fuel efficiency in an engine that is lighter and more compact than ever and reaches new heights of durability and reliability. J-series engine features a 4-valve system and OHC valve train design, which achieved an uniform combustion by a centered nozzle and combustion chamber design. This decreases the maximum combustion temperature and hence improved the NOx,smoke and PM emissions. And a reduced pumping loss results in improving the fuel consumption. J-series engines thus meet the Japanese 1994 emission regulations. Another feature is a fully electronically controlled common-rail fuel injection system, which is equipped in a specified engine of naturally aspirated 6 cylinder.
Technical Paper

Development of Low Fuel Consumption, High Durability, and Low Emissions J-Series Engines

1999-03-01
1999-01-0830
Environmental protection is now one of the most important social concerns in the world. In 1998, emission controls in the US required the reduction of NOx by 20% from the 1994 limit. Hino Motors has developed new J-series medium-duty diesel engines for trucks that meet the US 1998 emissions regulations. The engines comprise turbocharged and aftercooled 4- and 6-cylinder engines of the same cylinder bore and stroke. The engines feature a 4-valve system, OHC valve train design, centered nozzle arrangement, and an optimum combustion chamber design, which achieved uniform combustion. With these features, the maximum combustion temperature was decreased, and hence reduced the NOx, smoke, and PM emissions. A muffler integrated with a catalytic converter (catalytic muffler) was adopted to reduce PM emissions further. The engines with the catalytic muffler have successfully met the US 1998 emissions regulations.
Technical Paper

Development of Methanol Engine with Autoignition for Low NOx Emission and Better Fuel Economy

1989-09-01
891842
The spark-assisted methanol engine has disadvantages like poor fuel economy especially at light load and low spark plug durability affected by combustion characteristics. Investigations of combustion characteristics of the spark ignition system and the autoignition system in the methanol engine and discharge characteristics of a spark plug are described in this paper. It is clear that effective autoignition was accomplished by increasing the compression ratio and adopting an EGR system in the spark-assisted methanol engine. This new improved methanol engine which is named HAMS achieved good fuel economy at light load, a low NOx emission and longer spark plug life. And a heat insulated piston with a stainless steel cap is being investigated for further improvement of autoignition combustion characteristics.
Technical Paper

Development of a Combustion System for a Light Duty D.I. Diesel Engine

1983-09-12
831296
A new combustion system for a light duty D.I. diesel engine was developed, and a 3.5 ton payload truck (6.5 ton G.V.W.) equipped with this D.I. diesel engine and this combustion system realized good fuel economy and lower exhaust gas emission. Generally, light duty vehicles have to operate over a wide engine speed range. Therefore application of a D.I. diesel engine to light duty vehicles is difficult because of combustion tuning requirements over a wide engine speed range. Up to now, most of the diesel engines for light vehicles have been of the I.D.I. type. But the D.I. diesel engine has an evident advantage of lower fuel consumption. In these circumstances the authors developed a new combustion chamber shape for a small D.I. diesel engine with turbulence induced intake port and optimum fuel injection equipment. Various combustion chamber geometries were tested and evaluated.
Journal Article

Development of a Fuel Economy and Exhaust Emissions Test Method with HILS for Heavy-Duty HEVs

2008-04-14
2008-01-1318
The objective of this study was to develop a test method for heavy-duty HEVs using a hardware-in-the-loop simulator (HILS) to enhance the type-approval-test method. To achieve our objective, HILS systems for series and parallel HEVs were actually constructed to verify calculation accuracy. Comparison of calculated and measured data (vehicle speed, motor/generator power, rechargeable energy storage system power/voltage/current/state of charge, and fuel economy) revealed them to be in good agreement. Calculation error for fuel economy was less than 2%.
X