Refine Your Search

Topic

Author

Search Results

Technical Paper

6 Speed Automatic Transmission Vibration Magnitude Prediction and Whine Noise Improvement through Transmission System Modeling

2011-05-17
2011-01-1553
As automotive technology has been developed, gear whine has become a prominent contributor for cabin noise as the masking has been decreased. Whine is not the loudest source, but it is of high tonal noise which is often highly unpleasant. The gear noise originates at gear mesh. Transmission Error acts as an excitation source and these vibrations pass through gears, shafts and bearings to the housing which vibrates to produce noise on surrounding air. As microgeometry optimization target to reduce the fundamental excitation source of the noise, it has been favored method to tackle gear whine noise, especially for manual transmission. However, practicality of microgeometry optimization for the planetary gear system has been still in question, because of complex system structure and interaction among multi mesh gear sets make it hard to predict and even harder to improve. In this paper, successful case of whine noise improvement by microgeometry is presented.
Technical Paper

A Development of Aluminum EGR Cooler for Weight Reduction and Fuel Economy

2018-04-03
2018-01-0102
As environmental problems such as global warming are emerging, regulations on automobile exhaust gas are strengthened and various exhaust gas reduction technologies are being developed in various countries in order to satisfy exhaust emission regulations. Exhaust gas recirculation (EGR) technology is a very effective way to reduce nitrogen oxides (NOx) at high combustion temperatures by using EGR coolers to lower the combustion temperature. This EGR cooler has been mass-produced in stainless steel, but it is expensive and heavy. Recently, high efficiency and compactness are required for the EGR cooler to meet the new emission regulation. If aluminum material is applied to the EGR cooler, heat transfer efficiency and light weight can be improved due to high heat transfer coefficient of aluminum compared to conventional stainless steel, but durability is insufficient. Therefore, the aluminum EGR cooler has been developed to enhance performance and durability.
Journal Article

A Development of Energy Management System with Semi-Transparent Solar Roof and Off-Cycle Credit Test Methodology for Solar Power Assisted Automobile.

2017-03-28
2017-01-0388
CO2 emission is more serious in recent years and automobile manufacturers are interested in developing technologies to reduce CO2 emissions. Among various environmental-technologies, the use of solar roof as an electric energy source has been studied extensively. For example, in order to reduce the cabin ambient temperature, automotive manufacturers offer the option of mounting a solar cell on the roof of the vehicle [1]. In this paper, we introduce the semi-transparent solar cell mounted on a curved roof glass and we propose a solar energy management system to efficiently integrate the electricity generated from the solar roof into internal combustion engine (ICE) vehicles. In order to achieve a high efficiency solar system in different driving, we improve the usable power other than peak power of solar roof. Peak power or rated power is measured power (W) in standard test condition (@ 25°C, light intensity of 1000W/m2(=1Sun)).
Technical Paper

A Development of Fuel Saving Driving Technique for Parallel HEV

2018-04-03
2018-01-1006
This paper examines the effect of pulse-and-glide (PnG) driving strategies on the fuel efficiency when applied on parallel HEVs. Several PnG strategies are proposed, and these include the electrical, mechanical, and combined PnG strategies. The electrical PnG strategy denotes the hybrid powertrain control tactics in which the battery is charged or discharged according to the power demanded while maintaining the constant vehicle speed. On the other hand, the mechanical PnG strategy denotes the powertrain control tactics in which the vehicle accelerates or decelerates according to the power load while minimizing the battery usage. The combined PnG strategy involves both electrical and mechanical strategies to find a balanced point in between them. Here, a tradeoff relationship between the fuel efficiency and the vehicle drivability related to the tracking performance of the desired target speed is revealed.
Technical Paper

A Development of Smart Ventilation System

2015-03-10
2015-01-0018
There are some problems “windows fog up a lot” for ventilation system. We have Test Development Procedure to prevent the fog problems. But, Many fog problems occurred in the cars that we made. So in this paper, new ventilation system is needed and developed. The Smart Ventilation System automatically controls indoor air quality even though the blower motor is off. There are two sensors that is used for AutoDefogSensor system and CO2 CONTROL system.. The sensor is on when blower motor and heater control is off. We use these signals and make new ventilation logics. We evaluate this system in chamber & '13 winter test in USA.
Technical Paper

A Preliminary Study on the Evaporative Cooling System for FCEV

2024-04-09
2024-01-2406
The existing FCEV have been developed with only a few vehicle models. With the diversification of both passenger and commercial FCEV lineups, as well as the increasing demand for vehicle trailer towing, there is a growing need for high-capacity fuel cell stacks to be applied in vehicles. However, at the current level, there are limitations and issues that arise, such as insufficient power output and reduced driving speed. As a results, the importance of thermal energy management has been increasing along with the increase in required power. Traditional cooling performance enhancement methods have mainly focused on developing increased hardware specifications, but even this approach has reached its limitation due to package, cost and weight problem. Therefore, it is essential to develop a new cooling system to solve the increases in heat dissipation.
Technical Paper

A Research on the Prediction of Door Opening by the Inertia Effect during a Side Impact Crash

2016-04-05
2016-01-1532
The purpose of this study is to develop a dynamic model that can accurately predict the motion of the door handle and counterweight during side impact crash tests. The door locking system, mainly composed of the door outside handle and door latch, is theoretically modeled, and it is assumed that the door outer panel can rotate and translate in all three directions during a side impact crash. Additionally, the numerical results are compared with real crash video footage, and satisfactory qualitative agreement is found. Finally, the simplified test rig that efficiently reflects the real crash test is introduced, and its operation is analyzed.
Technical Paper

A Study for Fuel Economy Improvement on Applying New Technology for Torsional Vibration Reduction of Crank Pulley

2013-10-14
2013-01-2514
The method of Front End Auxiliary Drive (FEAD) system optimization can be divided into two ways. One is to use a mechanical device that decouples crank pulley from torsional vibration of crank shaft by using characteristics of spring. The other is to control belt tension through auto-tensioner in addition of alternator pulley device. Because the former case has more potential to reduce belt tension than the latter case, the development of mechanically decoupled crank pulley, despite of its difficulty of development, is getting popular among the industry. This paper characterizes latest crank pulley technologies, Crank Decoupler and Isolation Pulley, for torsional vibration reduction through functionality measurement result which composed of irregularity, slip, tensioner movement, belt span vibration, bearing hubload of idler and so on. Also it investigates their potential of belt tension reduction through steady state point fuel consumption test on dynamometer.
Technical Paper

A Study of Flame Propagation for Different Combustion Chamber Configurations in an SI Engine

1997-02-24
970876
High speed natural light motion picture records synchronized with head gasket ionization probe and in-cylinder pressure data have been made in the transparent engine of different combustion chamber configurations. For knocking cycles, the head gasket ionization current method simultaneously taken with pressure data was able to find the location of knocking occurrence. To investigate the effects of combustion chamber configurations, the flame propagation experiments for pent-roof combustion chamber with center ignition ( Modified Type I engine ) and modified pent-roof ( Type II engine ) combustion chamber were performed with high speed natural light photography technique. The flame propagation of Modified Type I engine represents more uniform patterns than that of Type II engine. The investigation of knocking combustion was also made possible by observing flame propagation with the measuring techniques that use head gasket ionization probe and in-cylinder pressure data.
Technical Paper

A Study of LNT & Urea SCR on DPF System to Meet the Stringent Exhaust Emission Regulation

2014-10-13
2014-01-2810
In diesel engine development, the new technology is coming out to meet the stringent exhaust emission regulation. The regulation demands more eco-friendly vehicles. Euro6c demands to meet not only WLTP mode, but also RDE(Real Driving Emission). In order to satisfy RDE mode, the new technology to reduce emissions should cover all operating areas including High Load & High Speed. It is a big challenge to reduce NOx on the RDE mode and a lot of DeNOx technologies are being developed. So the new DeNOx technology is needed to cover widened operating area and strict acceleration / deacceleration. The existing LNT(Lean NOx Trap) and Urea SCR(Selective Catalytic Reduction) is necessary to meet the typical NEDC or WLTP, but the RDE mode demands the powerful DeNOx technology. Therefore, the LNT & Urea SCR on DPF was developed through this study.
Technical Paper

A Study of Layout Regarding Integrated Controls on the Steering Wheel

2013-03-25
2013-01-0036
In order to utilize in-vehicle systems efficiently, many vehicles are becoming equipped with integrated controls near the center fascia or the control box. However, the placement of these control systems can cause safety issues and risks due to visual distractions. In this study, we proposed a new integrated touch screen on the steering wheel. For this experiment, a control system was placed on the steering wheel or the center fascia. 15 participants were required to drive while utilizing vent and navigation control tasks regarding four different locations. Three of these locations were based on the steering wheel (center, upper right, lower right) and one location on the center fascia. Afterwards, the task completion time and visual distraction rate of the different locations were measured and compared. The results showed that a touch screen placed on the upper right section of the steering wheel had better performance and lower user discomfort.
Technical Paper

A Study of Low-Friction Road Estimation using an Artificial Neural-Network

2018-04-03
2018-01-0811
Road friction estimation algorithms had been studied for many years because it is very important factor for safety control and fuel efficiency of vehicle. But traditional solutions are hard to adapt in automotive industry because their performance is not sufficient enough and expensive to implement. Therefore, this paper proposes a road friction estimation algorithm based on a trained artificial neural-network which is low cost and robust. The suggested method doesn’t need expensive additional sensors such as optical or lidar sensor, also it shows better performance in real car environment compared to other algorithms based on vehicle dynamics. In this paper, we would describe this algorithm in detail and analyze the test results evaluated in real road conditions.
Technical Paper

A Study of the Half Order Modulation Control for Diesel Combustion Noise by Using Model Based Controller Design

2019-03-25
2019-01-1416
This model based investigation is carried out in order to control the half order modulation for diesel engines using by virtual calibration approach and proposes a feedback control strategy to mitigate cylinder to cylinder imbalance from asymmetric cylinders torque production. Combustion heat release analysis is performed on test data to understand the root cause of observed cylinder to cylinder pressure variations. The injected fuel variations are shown to cause the observed pressure variations between cylinders. A feedback control strategy based on measured crank shaft position is devised to control the half order modulation to balance the combustion pressure profile between cylinders. This control strategy is implemented in Simulink and is tested in closed-loop with the diesel engine model in AMESim. The closed-loop performance indicates that the half order modulation is considerably improved while having minimal impact on the fuel consumption.
Technical Paper

A Study on Overcoming Unavailable Backward Driving and a New Fail-Safe Strategy for R-Gearless (P)HEV System

2024-04-09
2024-01-2170
Recently, as part of the effort to enhance fuel efficiency and reduce costs for eco-friendly vehicles, the R-gearless system has been implemented in the TMED (P)HEV system. Due to the removal of the reverse gear, a distinct backward driving method needs to be developed, allowing the Electronic Motor (e-Motor) system to facilitate backward movement in the TMED (P)HEV system. However, the capability of backward driving with the e-Motor is limited because of partial failure in the high-voltage system of an R-gearless system. Thus, we demonstrate that it is possible to improve backward driving problems by applying a new fail-safe strategy. In the event of a high-voltage battery system failure, backward driving can be achieved using the e-Motor with constant voltage control by the Hybrid Starter Generator (HSG), as proposed in this study.
Technical Paper

A Study on RANC Technique for Server-based Control Filter Optimization

2024-06-12
2024-01-2960
Broadband active noise control algorithms require high-performance so multi-channel control to ensure high performance, which results in very high computational power and expensive DSP. When the control filter update part need a huge computational power of the algorithm is separated and calculated by the server, it is possible to reduce cost by using a low-cost DSP in a local vehicle, and a performance improvement algorithm requiring a high computational power can be applied to the server. In order to achieve the above goal, this study analyzed the maximum delay time when communication speed is low and studied response measures to ensure data integrity at the receiving location considering situations where communication speed delay and data errors occur.
Journal Article

A Study on the Characteristics of an Oil-Free Centrifugal Compressor for Fuel Cell Vehicles

2016-04-05
2016-01-1184
The subject of this study is a centrifugal compressor for Fuel Cell Electric Vehicles (FCEV). Recently there is a growing interest in FCEVs since they are considered a realistic solution to environmental regulations for passenger cars to reduce emissions. Water vapor is the only byproduct of a reaction in the Proton Electrolyte Membrane (PEM) fuel cell stack which generates electricity with oxygen from the surrounding air and hydrogen from a fuel tank. Auxiliary systems called Balance of Plant (BOP) serve to provide air and hydrogen to the stack in a correct ratio. The compressor is one of key components of this system because compression of the intake air brings an increase in efficiency and power density of the FCEV. This paper presents the characteristics of a 10 kW class centrifugal compressor with an oil-free bearing system. It consists of a shaft, two airfoil journal bearings and a pair of thrust bearings.
Technical Paper

A Study on the Method to Manage the Weight and Cost of a Vehicle by Adjusting the Parameters of Styling Profile

2018-04-03
2018-01-1025
Since the fuel efficiency of vehicle has become one of the big issues due to environmental pollution problems, many studies have been conducted on various methods such as improving powertrain performance and aerodynamic performance, reducing the weight of the vehicle and so on. There have been many new attempts to reduce weight but mostly about improving material property. In the case of vehicles sharing the same platform, the weight and cost of vehicle are mainly changed by the exterior styling. But, there is no solution to control the exterior styling in terms of the weight and cost of vehicle, yet. The purpose of this study is to find the way to save the weight and cost of vehicle while achieving the various performance and requirements of vehicle (safety, aerodynamics, driver’s visibility and so on) from exterior styling point of view. We focused on the weight difference of the vehicles that shared the platform and were same overall dimensions.
Journal Article

A Tailgate(Trunk) Control System Based on Acoustic Patterns

2017-03-28
2017-01-1634
When customers use a tailgate (or trunk), some systems such as power tailgate and smart tailgate have been introduced and implemented for improving convenience. However, they still have some problems in some use cases. Some people have to search for the outside button to open the tailgate, or they should take out the key and push a button. In some cases, they should move their leg or wait a few seconds which makes some people feel that it is a long time. In addition, they have to push the small button which is located on the inner trim in order to close the tailgate. This paper proposes a new tailgate control technology and systems based on acoustic patterns in order to solve some inconvenience. An acoustic user interaction (AUI) is a technology which responds to human’s rubbing and tapping on a specific part analyzing the acoustic patterns. The AUI has been recently spotlighted in the automotive industry as well as home appliances, mobile devices, musical instruments, etc.
Journal Article

Active Booming Noise Control for Hybrid Vehicles

2016-04-05
2016-01-1122
Pressure variation during engine combustion generates torque fluctuation that is delivered through the driveline. Torque fluctuation delivered to the tire shakes the vehicle body and causes the body components to vibrate, resulting in booming noise. HKMC (Hyundai Kia Motor Company)’s TMED (Transmission Mounted Electric Device) type generates booming noises due to increased weight from the addition of customized hybrid parts and the absence of a torque converter. Some of the improvements needed to overcome this weakness include reducing the torsion-damper stiffness, adding dynamic dampers, and moving the operation point of the engine from the optimized point. These modifications have some potential negative impacts such as increased cost and sacrificed fuel economy. Here, we introduce a method of reducing lock-up booming noise in an HEV at low engine speed.
Technical Paper

An Experimental Study on Camshaft Impact Noise by Dynamic Coupling of Valve Train and Chain System

2024-04-09
2024-01-2827
To improve the fuel efficiency and satisfy the strict emission regulations, the development of internal combustion engine gets more complicated in both hardware and software perspectives, and the margins for durability and NVH quality become narrower, which could result in poor NVH robustness in harsh engine operating conditions. In this paper, we investigate experimentally the camshaft impact noise mechanism relating the valve train and timing chain forces to detailed motion of the camshaft and the chain tensioner. After the initial investigation of identifying the impact timings and specific engine operating points when the noise occurs, the camshaft orbital motion inside of the sliding bearing is measured and visualized with the proximity sensors with calibration after sensor mounting, in addition to the chain tensioner movements.
X