Refine Your Search

Topic

Author

Search Results

Viewing 1 to 20 of 20
Technical Paper

A Detailed Well to Wheel Analysis of CNG Compared to Diesel Oil and Gasoline for the French and the European Markets

2007-01-23
2007-01-0037
Pollutants emissions from transportation have become a major focus of environmental concerns in the last decades. Many alternative fuels are under consideration, among which Natural Gas as fossil resource offering an advantageous potential to reduce local emissions. The European Commission has set an objective of 10% of Natural Gas consumption for the transport sector by 2020. In a sustainable development view, both vehicle emissions and energy supply chain analysis from well to wheel must be addressed. Even if the main focus today is on CO2 emissions, it is interesting to evaluate the pollutant emissions of the whole Well to Wheel chain. Besides, as the potential of reducing pollutant emissions of vehicle (due to the improvement of engines and severization of norms), looking at pollutant emissions of the Well to Tank part of the chain could show the possible further improvements. Former studies exist, comparing Natural Gas to conventional and non conventional fuels.
Technical Paper

A Study of Mixture Formation in Direct Injection Diesel Like Conditions Using Quantitative Fuel Concentration Visualizations in a Gaseous Fuel Jet

2002-05-06
2002-01-1632
Quantitative fuel concentration visualizations are carried out to study the mixing process between fuel and air in Direct Injection (DI) Diesel like conditions, and generate high quality data for the validation of mixing models. In order to avoid the particular complication connected with fuel droplets, a gaseous fuel jet is investigated. Measurements are performed in a high-pressure chamber that can provide conditions similar to those in a diesel engine. A gas injection system able to perform injections in a high-pressure chamber with a good control of the boundary conditions is chosen and characterized. Mass flow rates typical of DI Diesel injection are reproduced. A Laser Induced Fluorescence technique requiring the mixing at high pressure of the fluorescent tracer, biacetyl, with the gaseous fuel, methane, is developed. This experimental technique is able to provide quantitative measurement of fuel concentration in high-pressure jets.
Technical Paper

AMT Control for a Mild-Hybrid Urban Vehicle with a Downsized Turbo-Charged CNG Engine

2007-04-16
2007-01-0286
Compressed natural gas (CNG) is considered as one of the most promising alternative fuels for transportation due to its ability to reduce greenhouse gas emissions (CO2, in particular) and its abundance. An earlier study from IFP has shown that CNG has a considerable potential when used as a fuel for a dedicated downsized turbo-charged SI engine on a small urban vehicle. To take further advantage of CNG assets, this approach can be profitably extended by adding a small secondary (electrical) power source to the CNG engine, thus hybridizing the powertrain. This is precisely the focus of the new IFP project, VEHGAN, which aims to develop a mild-hybrid CNG prototype vehicle based on a MCC smart car equipped with a reversible starter-alternator and ultra-capacitors (Valeo Starter Alternator Reversible System, StARS).
Technical Paper

Control-Oriented Mean-Value Model of a Fuel-Flexible Turbocharged Spark Ignition Engine

2010-04-12
2010-01-0937
Among the last years, environmental concerns have raised the interest for biofuels. Ethanol, blended with gasoline seems particularly suited for the operation of internal combustion engines, and has been in use for severals years in some countries. However, it has a strong impact on engine performance, which is emphasized on recent engine architectures, with downsizing through turbocharging and variable valve actuation. Taking all the benefits of ethanol-blended fuel thus requires an adaptation of the engine management system. This paper intends to assess the effect of gasoline-ethanol blending from this point of view, then to describe a mean-value model of a fuel-flexible turbocharged PFI-SI engine, which will serve as a basis for the development of control algorithms. The focus will be in this paper on ethanol content estimation in the blend, supported by both simulation and experimental results.
Technical Paper

Development of a Flex Fuel Vehicle: Impact on Powertrain's Design and Calibration

2010-10-25
2010-01-2087
The benefits of running on ethanol-blended fuels are well known, especially global CO₂ reduction and performances increase. But using ethanol as a fuel is not drawbacks free. Cold start ability and vehicle autonomy are appreciably reduced. These two drawbacks have been tackled recently by IFP and its partners VALEO and Cristal Union. This article will focus on the second one, as IFP had the responsibility to design the powertrain of a fully flex-fuel vehicle (from 0 to 100% of ethanol) with two main targets: reduce the fuel consumption of the vehicle and maintain (at least) the vehicle performances. Using a MPI scavenging in-house concept together with turbocharging, as well as choosing the appropriate compression ratio, IFP managed to reach the goals.
Technical Paper

Development of a Multi-Sensors Head Gasket for Knock Localization

2003-03-03
2003-01-1117
In order to determine the area where knock occurs in a single cylinder engine, an acoustic methodology needs a minimum of four simultaneous pressure measurements in the combustion chamber. A specific cylinder head gasket integrating 12 pressure sensors has been developed and tested. The gasket is based on a bonded multilayer technology including high temperature piezoelectric cells, metallic and insulating sheets and printed circuit films. The total thickness is close to 1.25 mm (1/20 inch) and allows a straight forward substitution of the original gasket without modification. The sensors have large frequency bandwidth (typically 3-100 kHz) and withstand severe conditions (heat, combustion, pressure, vibrations, static pre-stress, electromagnetic fields and shocks). Signal processing adaptation of the dedicated exploitation software has brought good success for the single cylinder prototype, which remains operational after 100 hours of extreme conditions running (high knock).
Technical Paper

Effect of Fuel Characteristics on the Performances and Emissions of an Early-injection LTC / Diesel Engine

2008-10-06
2008-01-2408
New combustion processes like LTC (Low Temperature Combustion) that includes HCCI (Homogeneous Charge Compression Ignition), PCCI (Premixed Charge Compression Ignition), PPCI (Partial Premixed Compression Ignition)… are promising ways to reduce simultaneously NOx and PM. Nevertheless, these combustion processes can be used only on a limited part of the engine load and speed map. Therefore, it appeared interesting to assess how the fuel, through its characteristics, could enhance the operating range in such combustion processes. That was the aim of an international consortium carried out by IFP and supported by numerous industrial companies. First a specific procedure has been developed to compare the different fuels on a early injection HCCI single cylinder engine. Then, using this procedure, a matrix of fuels having different cetane numbers (CN = 40-63), volatilities and chemical compositions has been tested.
Journal Article

Effects of Methane/Hydrogen Blends On Engine Operation: Experimental And Numerical Investigation of Different Combustion Modes

2010-10-25
2010-01-2165
The introduction of alternative fuels is crucial to limit greenhouse gases. CNG is regarded as one of the most promising clean fuels given its worldwide availability, its low price and its intrinsic properties (high knocking resistance, low carbon content...). One way to optimize dedicated natural gas engines is to improve the CNG slow burning velocity compared to gasoline fuel and allow lean burn combustion mode. Besides optimization of the combustion chamber design, hydrogen addition to CNG is a promising solution to boost the combustion thanks to its fast burning rate, its wide flammability limits and its low quenching gap. This paper presents an investigation of different methane/hydrogen blends between 0% and 40 vol. % hydrogen ratio for three different combustion modes: stoichiometric, lean-burn and stoichiometric with EGR.
Technical Paper

Ethanol as a Diesel Base Fuel - Potential in HCCI Mode

2008-10-06
2008-01-2506
This work studies the potential of ethanol-Biodiesel-Diesel fuel blends in both conventional Diesel and HCCI combustion modes. First, ethanol based fuels were tested on a modern commercial multi-cylinder DI diesel engine. The aim of this phase was to assess how such fuels affect Diesel engine performances and emissions. These results indicate that low levels of PM and NOx emissions, with a contained fuel consumption penalty and with an acceptable noise level, are achievable when the Diesel-ethanol blends are used in combination with an optimized combustion control. Moreover, experiments with ethanol based blends were performed using a single cylinder engine, running under both early injection HCCI and Diesel combustion modes. Compared to a conventional fuel, these blends allow increasing the HCCI operating range and also lead to higher maximum power output in conventional Diesel combustion.
Technical Paper

Ethanol as a Diesel Base Fuel: Managing the Flash Point Issue - Consequences on Engine Behavior

2009-06-15
2009-01-1807
Facing more and more stringent regulations, new solutions are developed to decrease pollutant emissions. One of them have shown promising and relevant results. It consists of the use of ethanol as a blending component for diesel fuel Nevertheless, the addition of ethanol to Diesel fuel affects some key properties such as the flash point. Consequently, Diesel blends containing ethanol become highly flammable at a temperature around ambient temperature. This study proposes to improve the formulation of ethanol based diesel fuel in order to avoid flash point drawbacks. First, a focus on physical and chemical properties is done for ethanol based diesel fuels with and without flash point improvement. Second, blends are tested on a passenger car diesel engine, under a wide operating range conditions from low load low speed up to maximum power. The main advantage of the ethanol based fuels generate low smoke level, that allows using higher EGR rate, thus leading to an important NOx decrease.
Journal Article

Impact of Fuel Properties on the Performances and Knock Behaviour of a Downsized Turbocharged DI SI Engine - Focus on Octane Numbers and Latent Heat of Vaporization

2009-04-20
2009-01-0324
Facing the CO2 emission reduction challenge, the combination of downsizing and turbocharging appears as one of the most promising solution for the development of high efficiency gasoline engines. In this context, as knock resistance is a major issue, limiting the performances of turbocharged downsized gasoline engines, fuel properties are more than ever key parameters to achieve high performances and low fuel consumption's levels. This paper presents a combustion study carried out into the GSM consortium of fuel quality effects on the performances of a downsized turbocharged Direct Injection SI engine. The formulation of two adapted fuel matrix has allowed to separate and evaluate the impacts of three major fuel properties: Research Octane Number (RON), Motor Octane Number (MON) and Latent Heat of Vaporization (LHV). Engine tests were performed on a single cylinder engine at steady state operating condition.
Technical Paper

Innovative Ultra-low NOx Controlled Auto-Ignition Combustion Process for Gasoline Engines: the 4-SPACE Project

2000-06-19
2000-01-1837
The purpose of the 4-SPACE (4-Stroke Powered gasoline Auto-ignition Controlled combustion Engine) industrial research project is to research and develop an innovative controlled auto-ignition combustion process for lean burn automotive gasoline 4-stroke engines application. The engine concepts to be developed could have the potential to replace the existing stoichiometric / 3-way catalyst automotive spark ignition 4-stroke engines by offering the potential to meet the most stringent EURO 4 emissions limits in the year 2005 without requiring DeNOx catalyst technology. A reduction of fuel consumption and therefore of corresponding CO2 emissions of 15 to 20% in average urban conditions of use, is expected for the « 4-SPACE » lean burn 4-stroke engine with additional reduction of CO emissions.
Technical Paper

Modeling the Laminar Flame Speed of Natural Gas and Gasoline Surrogates

2010-04-12
2010-01-0546
An unified model with a single set of kinetic parameters has been proposed for modeling laminar flame velocities of several alkanes using detailed kinetic mechanisms automatically generated by the EXGAS software. The validations were based on recent data of the literature. The studied compounds are methane, ethane, propane, n-butane, n-pentane, n-heptane, iso-octane, and two mixtures for natural gas and surrogate gasoline fuel. Investigated conditions are the following: unburned gases temperature was varied from 300 to 600 K, pressures from 0.5 to 25 bar, and equivalence ratios range from 0.4 to 2. For the overall studied compounds, the agreement between measured and predicted laminar burning velocities is quite good.
Technical Paper

On the origin of Unburned Hydrocarbon Emissions in a Wall Guided, Low NOx Diesel Combustion System

2007-07-23
2007-01-1836
The formation mechanisms of unburned hydrocarbons (HC) in low NOx, homogeneous type Diesel combustion have been investigated in both standard and optical access single cylinder engines operating under low load (2 and 4 bar IMEP) conditions. In the standard (i.e. non-optical) engine, parameters such as injection timing, intake temperature and global equivalence ratio were varied in order to analyse the role of bulk quenching on HC emissions formation. Laser-induced fluorescence (LIF) imaging of in-cylinder unburned HC within the bulk gases was performed on the optical-access engine. Furthermore, studies were performed in order to ascertain whether the piston top-land crevice volume contributes significantly to engine-out HC emissions. Finally, the role of piston-top fuel films and their impact on HC emissions was studied. This was investigated on the all-metal engine using two fuels of different volatilities.
Journal Article

Optimization of a Euro 5 Vehicle Powered by an Ethanol Based Diesel Fuel

2010-05-05
2010-01-1520
Diversifying energy resources and reducing greenhouse gas emissions are key priorities in the forthcoming years for the automotive industry. Currently, among the different solutions, sustainable biofuels are considered as one of the most attractive answer to these issues. This paper deals with the vehicle application of an innovative diesel fuel formulation using Ethanol to tackle these future challenges. The main goal is to better understand the impact of using biofuel blends on engine behavior, reliability and pollutants emissions. This alternative oxygenated fuel reduces dramatically particulate matter (PM) emissions; this paves the way to improve the NOx/PM/CO₂ trade-off. Another major interest is to avoid adding a particulate filter in the exhaust line and to avoid modifying powertrain and vehicle hardware and therefore to minimize the overall cost to fulfill upcoming emission regulations.
Technical Paper

Potential to Improve Specific Power Using Very High Injection Pressure In HSDI Diesel Engines

2009-04-20
2009-01-1524
Engine downsizing is one of the most promising engine solutions to improve efficiency, but requires higher specific performance because of a lower engine displacement. The study is based on experimental work performed with an IFP prototype single cylinder engine, representative of passenger car applications. This engine enables very high specific power, with a high level of thermal and mechanical constraints. Tests were carried out on both full load and part load operation with a prototype common rail equipment capable of very high fuel pressure (up to 250 MPa). Results show that increasing fuel flow rate using fuel injection pressure instead of increasing nozzle hole diameter is more advantageous at full load, mainly because a lower nozzle hole diameter improves air entrainment. Benefits observed with increased injection pressure are enhanced when associated with upgraded engine thermo-mechanical limits, and advanced turbo charging system.
Technical Paper

Progress in Diesel HCCI Combustion Within the European SPACE LIGHT Project

2004-06-08
2004-01-1904
The purpose of the European « SPACE LIGHT » (Whole SPACE combustion for LIGHT duty diesel vehicles) 3-year project launched in 2001 is to research and develop an innovative Homogeneous internal mixture Charged Compression Ignition (HCCI) for passenger cars diesel engine where the combustion process can take place simultaneously in the whole SPACE of the combustion chamber while providing almost no NOx and particulates emissions. This paper presents the whole project with the main R&D tasks necessary to comply with the industrial and technical objectives of the project. The research approach adopted is briefly described. It is then followed by a detailed description of the most recent progress achieved during the tasks recently undertaken. The methodology adopted starts from the research study of the in-cylinder combustion specifications necessary to achieve HCCI combustion from experimental single cylinder engines testing in premixed charged conditions.
Journal Article

System Approach for Compliance with Full Load Targets on a Wall Guided Diesel Combustion System

2008-04-14
2008-01-0840
Low temperature combustion concept as HCCI is one of the most promising research ways to comply future emission regulations of Diesel passenger vehicles. IFP promoted this concept with NADI™ (Narrow Angle Direct Injection) combustion design whose original approach lies on a fuel spray guided by the bowl central tip to the re-entrant. For full load operating range, one of the key issue for success is to use as much as possible available air in the combustion chamber in order to reach low value of air fuel ratio, and therefore high value of specific power and specific torque. In this study, engine tests on a single cylinder engine with NADI™ concept are performed at full load; 3-D calculations as well as air/fuel mixing process visualizations in a constant volume vessel with optical access allowed to establish criteria for helping future combustion system design for full load operation.
Journal Article

Towards an Innovative Combination of Natural Gas and Liquid Fuel Injection in Spark Ignition Engines

2010-05-05
2010-01-1513
In order to address the CO₂ emissions issue and to diversify the energy for transportation, CNG (Compressed Natural Gas) is considered as one of the most promising alternative fuels given its high octane number. However, gaseous injection decreases volumetric efficiency, impacting directly the maximal torque through a reduction of the cylinder fill-up. To overcome this drawback, both independent natural gas and gasoline indirect injection systems with dedicated engine control were fitted on a RENAULT 2.0L turbocharged SI (Spark Ignition) engine and were adapted for simultaneous operation. The main objective of this innovative combination of gas and liquid fuel injections is to increase the volumetric efficiency without losing the high knocking resistance of methane.
Technical Paper

Well to Wheels Analysis of Biofuels vs. Conventional Fossil Fuels : a Proposal for Greenhouse Gases and Energy Savings Accounting in the French Context

2008-04-14
2008-01-0673
The recent development of biofuel production worldwide is closely linked to GHG savings objectives and to regional agricultural policies. Many existing studies intend to evaluate the net non renewable energy and GHG savings associated to the various biofuel production pathways. However, there is no consensus on the results of those studies. The main explanations of variations among the results are the following: energy consumption and GHG emissions of the reference fossil pathway, data used for the representation of farming processes and biofuel production processes, accounting for carbon storage in agricultural soils, reference use of the land, choice of an allocation method in case of coproduction. There is a strong drive in the European Union for a certification on the sustainability of biofuel pathways.
X