Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

A Comparison of Conventional and Reactivity Controlled Compression Ignition (RCCI) Combustion Modes in a Small Single Cylinder Air-Cooled Diesel Engine

2017-10-08
2017-01-2365
Reactivity controlled compression ignition (RCCI) is one of the most promising low temperature combustion (LTC) strategies to achieve higher thermal efficiencies along with ultra low oxides of nitrogen (NOx) and particulate matter emissions. Small single cylinder diesel engines of air-cooled type are finding increasing applications in the agriculture pump-set and small utility power generation owing to their lower cost and fuel economy advantages. In the present work, a small single cylinder diesel engine is initially operated under conventional combustion mode at rated speed, varying load conditions to establish the base line reference data. Then, the engine is modified to operate under RCCI combustion mode with a newly designed cylinder head to accommodate a high pressure, fully flexible electronically controlled direct diesel fuel injection system, a low pressure gasoline port fuel injection system and an intake air pre heater.
Technical Paper

A Comparison of Different Low Temperature Combustion Strategies in a Small Single Cylinder Diesel Engine under Low Load Conditions

2017-10-08
2017-01-2363
Advanced low temperature combustion (LTC) modes are most promising to reduce green house gas emissions owing to fuel economy benefits apart from simultaneously reducing oxides of nitrogen (NOx) and particulate matter (PM) emissions from diesel engines. Various LTC strategies have been proposed so far and each of these LTC strategies have their own advantages and limitations interms of precise ignition control, achievable load range and higher unburned emissions. In the present work, a small single cylinder diesel engine is initially operated under conventional combustion mode at rated speed, varying load conditions to establish the base line reference data. Then, the engine is modified to operate under different LTC strategies including Homogenous Charge Compression Ignition (HCCI), Premixed Charge Compression Ignition (PCCI) and Reactivity Controlled Compression Ignition (RCCI).
Technical Paper

A Holistic Approach to Develop a Common Rail Single Cylinder Diesel Engine for Bharat Stage VI Emission Legislation

2020-04-14
2020-01-1357
The upcoming Bharat Stage VI (BS VI) emission legislation has put enormous pressure on the future of small diesel engines which are widely used in the Indian market. The present work investigates the emission reduction potential of a common rail direct injection single cylinder diesel engine by adopting a holistic approach of lowering the compression ratio, boosting the intake air and down-speeding the engine. Experimental investigations were conducted across the entire operating map of a mass-production, light-duty diesel engine to examine the benefits of the proposed approach and the results are quantified for the modified Indian drive cycle (MIDC). By reducing the compression ratio from 18:1 to 14:1, the oxides of nitrogen (NOx) and soot emissions are reduced by 40% and 75% respectively. However, a significant penalty in fuel economy, unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are observed with the reduced compression ratio.
Technical Paper

An Experimental Study of Microscopic Spray Characteristics of a GDI Injector Using Phase Doppler Interferometry

2016-02-01
2016-28-0006
Gasoline Direct Injection (GDI) engine is known for its higher power and higher thermal efficiency. Researchers are steadily determining and resolving the problems of fuel injection in a GDI engine. In order to meet the stringent emission norms such as PM and NOx emitted by a GDI engine, it is necessary to investigate the microscopic spray characteristics and fuel-air mixing process. This paper aims to share the fundamental knowledge of the interacting mixture preparation mechanisms at the wide range of fuel injection pressures. The investigations were carried out at five different fuel injection pressures viz: 40, 80, 120, 160, 200 bar, for 24 mg fuel per injection. A high speed CCD camera was used to determine the macroscopic spray characteristics of the GDI injector. It was found that spray penetration length increased with increasing fuel injection pressure. Phase Doppler Interferometry (PDI) was used to determine the droplet size and droplet velocity for different test fuels.
Technical Paper

Analysis of Combustion Noise in a Small Common-Rail Direct-Injection Diesel Engine at Different Engine Operating Conditions

2020-04-14
2020-01-0419
Stringent emission regulations on one hand and increasing demand for better fuel economy along with lower noise levels on the other hand require adoption of advanced common-rail direct-injection technologies in diesel engines. In the present work, a small 0.9-l, naturally aspirated, two-cylinder, common-rail direct-injection diesel engine is used for the analysis of combustion noise at different engine operating conditions. Experiments are conducted at different loads and engine speeds, incorporating both single and multiple (i.e. pilot and main) injections along with different injection timings. In the case of multiple injections, the influence of pilot injection quantity is also evaluated on the combustion noise while maintaining the same load. In-cylinder pressure was recorded with the resolution of 0.1 crank angle degree, and it was used for the quantitative analysis of noise assessed from the resulting cylinder pressure spectra, and sound pressure level.
Technical Paper

Comparative Studies on the Idling Performance of a Three Cylinder Passenger Car Engine Fitted with a Carburettor and a Single Point Electronic Gasoline Fuel Injection System

1997-05-01
971615
Experimental investigations relating to the performance and emission characteristics under idling conditions of a three cylinder passenger car spark ignition engine operating on a conventional carburettor and a developed single point gasoline fuel injection system are described in this paper. The idling performance at different engine speeds was studied by carrying out comprehensive engine testing on a test bed in two phases. In the first phase, experiments were conducted on an engine fitted with a conventional carburettor whilst they were extended to the engine provided with a developed electronic single point fuel injection (SPI) system, whose fuel spray was directed against the direction of air flow. The injection timing of the SPI system was varied from 82 deg. before inlet valve opening (or 98 deg. before top dead center) to 42 deg. after inlet valve opening (or 26 deg. after top dead center).
Technical Paper

Diesel Engine Cylinder Deactivation for Improved System Performance over Transient Real-World Drive Cycles

2018-04-03
2018-01-0880
Effective control of exhaust emissions from modern diesel engines requires the use of aftertreatment systems. Elevated aftertreatment component temperatures are required for engine-out emissions reductions to acceptable tailpipe limits. Maintaining elevated aftertreatment components temperatures is particularly problematic during prolonged low speed, low load operation of the engine (i.e. idle, creep, stop and go traffic), on account of low engine-outlet temperatures during these operating conditions. Conventional techniques to achieve elevated aftertreatment component temperatures include delayed fuel injections and over-squeezing the turbocharger, both of which result in a significant fuel consumption penalty. Cylinder deactivation (CDA) has been studied as a candidate strategy to maintain favorable aftertreatment temperatures, in a fuel efficient manner, via reduced airflow through the engine.
Technical Paper

Effect Of Swirl and Tumble on the Stratified Combustion of a DISI Engine - A CFD Study

2011-04-12
2011-01-1214
Of late direct injection engines are replacing carburetted and port injected engines due to their high thermal efficiency and fuel economy. One of the reasons for the increased fuel economy is the ultra lean mixture with which the engine operates under low loads. Under the low load conditions, the air fuel ratio of the mixture near the spark plug is close to stoichiometric values while the overall mixture is lean, which is called stratified mixture. In order to achieve this, proper air motion during the late stages of compression is a must. Quality of the mixture depends on the time of injection as well as the type of fuel injector and mixture preparation strategy used. Engines employing air guided mixture preparation are considered as the second generation engines. For understanding the efficient mixture preparation method, three types of flow structures like base (low tumble), high tumble and inclined swirl are created inside the engine cylinder using shrouds on the intake valves.
Technical Paper

Effect of Baffle Height on the in-Cylinder Air-Fuel Mixture Preparation in a Gasoline Direct Injection Engine – A Computational Fluid Dynamics Analysis

2024-04-09
2024-01-2697
In-cylinder fluid dynamics enhance performance and emission characteristics in internal combustion (IC) engines. Techniques such as helical ports, valve shrouding, masking, and modifications to piston profiles or vanes in ports are employed to achieve the desired in-cylinder flows in these engines. However, due to space constraints, modifications to the cylinder head are typically minimal. The literature suggests that introducing baffles into the combustion chamber of an IC engine can enhance in-cylinder flows, air-fuel mixing, and, subsequently, stratification. Studies have indicated that the height of the baffles plays a significant role in determining the level of improvement in in-cylinder flow and air-fuel mixing. Therefore, this study employs Computational fluid dynamics (CFD) analysis to investigate the impact of baffle height on in-cylinder flow and air-fuel mixing in a four-stroke, four-valve, spray-guided gasoline direct injection (GDI) engine.
Technical Paper

Effect of Fuel Injection Parameters on Performance and Emission Characteristics in HCCI Engine - A CFD Study

2017-11-05
2017-32-0096
Today, homogenous charge compression ignition (HCCI) engines are becoming very popular because of their potential to reduce soot and nitric oxides (NOx) emissions simultaneously. But, their performance and emission characteristics are very much dependent upon fuel injection strategy and parameters. However, they also have many challenges viz., improper combustion phasing, high rate of pressure rise and narrow operating range. Therefore, addressing them is very essential before making them a commercial success. This study focuses on evaluating the effect of fuel injection strategy and parameters on the performance and emission characteristics of a HCCI engine by computational fluid dynamics (CFD) analysis. In this study, a four-stroke engine operating in the HCCI mode is considered and the CFD analysis is carried out by using the CONVERGE.
Technical Paper

Effect of Fuel Injector Location and Nozzle-Hole Orientation on Mixture Formation in a GDI Engine: A CFD Analysis

2018-04-03
2018-01-0201
Gasoline direct injection (GDI) engines have gained popularity in the recent times because of lower fuel consumption and exhaust emissions compared to that of the conventional port fuel injection (PFI) engine. But, in these engines, the mixture formation plays an important role which affects combustion, performance and emission characteristics of the engine. The mixture formation, in turn, depends on many factors of which fuel injector location and orientation are most important parameters. Therefore, in this study, an attempt has been made to understand the effect of fuel injector location and nozzle-hole orientation on the mixture formation, performance and emission characteristics of a GDI engine. The mixture stratification inside the combustion chamber is characterized by a parameter called “stratification index” which is based on average equivalence ratio at different zones in the combustion chamber.
Technical Paper

Experimental Investigation of Combustion Stability and Particle Emission from CNG/Diesel RCCI Engine

2020-04-14
2020-01-0810
This paper presents the experimental investigation of combustion stability and nano-particle emissions from the CNG-diesel RCCI engine. A modified automotive diesel engine is used to operate in RCCI combustion mode. An open ECU is used to control the low and high reactivity fuel injection events. The engine is tested for fixed engine speed and two different engine load conditions. The tests performed for various port-injected CNG masses and diesel injection timings, including single and double diesel injection strategy. Several consecutive engine cycles are recorded using in-cylinder combustion pressure measurement system. Statistical and return map techniques are used to investigate the combustion stability in the CNG-diesel RCCI engine. Differential mobility spectrometer is used for the measurement of particle number concentration and particle-size and number distribution. It is found that advanced diesel injection timing leading to higher cyclic combustion variations.
Technical Paper

Investigations on the Design and Performance of Two Types of Hot Surface Ignition Engines

1992-09-01
921632
Use of methanol and ethanol in conventional diesel engines is associated with problems on account of the high self ignition temperature of these fuels. The Hot Surface Ignition (HSI) method wherein a part of the injected fuel is made to touch an electrically heated hot surface for ignition, is an effective way of utilizing these fuels in conventional diesel engines. In the present work two types of HSI engines, one using a large ceramic base and the other using a conventional glowplug were developed. These engines were tested with methanol, M.spirit (about 90 % methanol and 10 % ethanol) and diesel. The results of performance, fuel economy emissions and combustion parameters including heat release rates for these fuels with both the types of HSI engines are presented. Diesel engines are commonly used as primemovers in the mass transportation and agricultural sectors because of their high brake thermal efficiency and reliability.
Technical Paper

New Concept PFI-Atomizer Fueling System in a Small Single Cylinder SI Engine

2020-09-15
2020-01-2233
This paper presents results from tests using a fuel injection system which uses an ultrasonic atomizer paired with a port fuel injector (PFI). This concept was tested on a four stroke 200 cc spark-ignited two-wheeler engine. A throttle body with a PFI mounted on it was added to the air intake path of the engine, replacing the conventional carburetor. The ultrasonic disc was mounted in such a way, that the injected fuel from the PFI, falls directly on the face of the disc. The atomizer and the PFI were timed and synchronized appropriately using an Arduino® microcontroller, to promote atomization and vaporization of the fuel injected. The atomizer disc was excited using a high frequency oscillator circuit. The engine could be tested at various speeds and loads, corresponding to points which lie on the local drive duty cycle. The engine test results showed improvement in the engine exhaust emissions.
Technical Paper

Non-Reacting and Reacting Flow Analysis in an Aero-Engine Gas Turbine Combustor Using CFD

2007-04-16
2007-01-0916
A gas turbine combustion system is an embodiment of all complexities that engineering equipment can have. The flow is three dimensional, swirling, turbulent, two phase and reacting. The design and development of combustors, until recent past, was an art than science. If one takes the route of development through experiments, it is quite time consuming and costly. Compared to the other two components viz., compressor and turbine, the combustion system is not yet completely amenable to mathematical analysis. A gas turbine combustor is both geometrically and fluid dynamically quite complex. The major challenge a combustion engineer faces is the space constraint. As the combustion chamber is sandwiched between compressor and turbine there is a limitation on the available space. The critical design aspect is in facing the aerodynamic challenges with minimum pressure drop. Accurate mathematical analysis of such a system is next to impossible.
Technical Paper

Study on Effect of Engine Operating Parameters on Flame Characteristics

2015-04-14
2015-01-0749
In gasoline direct injection (GDI) engines, air-fuel mixture homogeneity plays a major role on engine performance, especially in combustion and emission characteristics. The performance of the engine largely depends on various engine operating parameters viz., start of injection, duration of injection and spark timing. In order to achieve faster results CFD is becoming a handy tool to optimize and understand the effect of these parameters. Therefore, this study aims on evaluating the two injection parameters viz., single and split injection to evaluate different flame characteristics. Novelty in this study is to define five different parameters which are called α, β, γ, δ and η the details of which are explained in the paper. In order to understand the flame characteristics, these five parameters are found to be very useful. In the present study, a single-cylinder, two-valve, four- stroke engine which is used in two-wheelers in India is considered for carrying out the CFD analysis.
Journal Article

Tomographic Particle Image Velocimetry for Flow Analysis in a Single Cylinder Optical Engine

2015-04-14
2015-01-0599
Better understanding of flow phenomena inside the combustion chamber of a diesel engine and accurate measurement of flow parameters is necessary for engine optimization i.e. enhancing power output, fuel economy improvement and emissions control. Airflow structures developed inside the engine combustion chamber significantly influence the air-fuel mixing. In this study, in-cylinder air flow characteristics of a motored, four-valve diesel engine were investigated using time-resolved high-speed Tomographic Particle Imaging Velocimetry (PIV). Single cylinder optical engine provides full optical access of combustion chamber through a transparent cylinder and flat transparent piston top. Experiments were performed in different vertical planes at different engine speeds during the intake and compression stroke under motoring condition. For visualization of air flow pattern, graphite particles were used for flow seeding.
Technical Paper

Transient Spray Characteristics of Air Assisted Fuel Injection

2015-04-14
2015-01-0920
Gasoline direct injection (GDI) technology is already in use in four wheeler applications owing to the additional benefits in terms of better combustion and fuel economy. The air-assisted in-cylinder injection is the emerging technology for gasoline engines which works with low pressure injection systems unlike gasoline direct injection (GDI) system. GDI systems use high pressure fuel injection, which provides better combustion and reduced fuel consumption. It envisages small droplet size and low penetration rate which will reduce wall wetting and hydrocarbon emissions. This study is concerned with a CFD analysis of an air-assisted injection system to evaluate mixture spray characteristics. For the analysis, the air injector fitted onto a constant volume chamber (CVC) maintained at uniform pressure is considered. The analysis is carried out for various CVC pressures, mixture injection durations and fuel quantities so as to understand the effect on mixture spray characteristics.
X