Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

A Study of the Effects of Chamber Geometries on Flame Behavior in a DI Diesel Engine

1995-10-01
952515
An experimental study aiming to investigate the effects of combustion chamber geometry on combustion process has been carried out in an optically accessible DI diesel engine. The combustion processes of three different chamber geometries, included the production type, were revealed and the flame movement behaviors such as the distribution of flame velocity vectors and the averaged flame velocity inside and outside the combustion chamber were measured by means of a cross-correlation method. Meanwhile, an endoscope system was used to acquire information about the distribution of flames inside and outside the chamber. BY comparing the flame movement and distribution between different chambers and nozzle protrusions, the results showed that; The chamber geometry has significant effect on the flame velocity, the flame velocities of the reentrant chamber were larger than that of the dish chamber during expansion period.
Technical Paper

An Observation and Analysis of the Combustion Under Supercharging on a DI Diesel Engine

1994-03-01
940844
Supercharging as the method of increasing the output of diesel engines has a long history. Recently, because the potential for lower exhaust emissions for a given power output, supercharging has been considered as a method to reach increasingly strict emissions standards. Some research investigating the effects of supercharging has shown favorable results in terms of emissions(e.g.[1][2][3] *). Also some fundamental studies have examined the effect of ambient pressures on the characteristics of spray and ignition in constant volume combustion borb[4][5][6][7]. However, for further improvement of combustion when utilizing supercharging, more detailed information inside of the combustion chamber is needed about the effects of supercharging on fuel spray and combustion. In order to gather this information, it is necessary to observe the processes within the combustion chamber of a supercharged engine.
Technical Paper

Dual Mode Combustion Concept With Premixed Diesel Combustion by Direct Injection Near Top Dead Center

2003-03-03
2003-01-0742
Premixed diesel combustion was performed and various characteristics examined with fuel injection timing near top dead center (TDC). A lean and uniform fuel-air mixture was found to during 25° C.A. with a narrow injection angle (27.5° with respect to horizontal), shallow dish combustion chamber, and low cetane number fuel (CN=19). These conditions enabled low NOx combustion in no exhaust gas re-circulation (EGR), despite fuel injection timing around 25° BTDC. Furthermore, HC emissions were lower than with premixed diesel combustion of the early injection type. Because fuel injection timing was near TDC, the volume of the mixture dispersed to a squish area was decreased. This combustion mode was also achieved with a high-cetane fuel (conventional diesel fuel) and high EGR rate conditions. However, in this case, it was difficult to adjust the ignition timing near top dead center. This combustion system also showed good performance in conventional diesel combustion mode.
Technical Paper

Measurement of Liquid Phase Penetration of vaporating Spray in a DI Diesel Engine

1997-05-01
971645
This paper introduced a very simple method to measure the liquid phase of spray in an optically accessible DI diesel engine. Particular attention was paid to easy usage and maintaining the compression ratio of the real engine. As a result, a less-expensive 4 W argon laser was used as the beam source and an E-10 high-speed camera was used for continuously observing the elastic-scatter liquid phase image. Meanwhile, the compression ratio can be kept as the real engines by this method. Through this method, the effects such as injection pressure, nozzle specification, intake air boost and temperature on liquid phase penetration before ignition were investigated. Reducing nozzle hole diameter decreased the length of the liquid phase. Increasing injection pressure hastened the evolution of liquid phase, while the liquid phase length varied complexly. Increasing intake air boost considerably shortened the liquid phase penetration and ignition delay.
Technical Paper

NVH Experimental Analyses for an Engine Structure Model Assembled with Ordinary Tap Bolts and with Through Bolts

2003-05-05
2003-01-1732
A series of NVH experiments were performed for a set of single cylinder engine models made of aluminum, consisting of a cylinder head, a cylinder block and a bed-plate. Each has the same outer size of 150mm × 150mm; the different heights are 100mm, 200mm and 80mm respectively. Those dimensions were determined following the dimensions for a diesel engine in lightweight commercial vehicle with the bore size of 100mm and the crankshaft main bearing diameter of 60mm. We chose 112 of measuring points on the structure surfaces and performed a series of impact tests, for the following cases: (a) When the cylinder head and the bed-plate were fastened to the cylinder block by two sets of four ISO M10 tap-bolts, each with the lengths ℓ1 =117mm and ℓ2 =97mm. (b) When the cylinder head and the bed-plate were fastened to the cylinder block together by a set of four ISO M10 through-bolts of grip length ℓ3 =380mm.
Technical Paper

NVH Experiments and Analyses for an Single Cylinder Engine Model Assembled with Tap-Bolts and with Through-Bolts

2005-05-16
2005-01-2531
A series of NVH experiments were performed for a set of single cylinder engine models made of aluminum, with bore sizes of 100mm. Each engine model consists of a cylinder head, a cylinder block and a bedplate. Each has the same size of 150mm × 150mm, with different heights of 100mm, 200mm and 80mm, respectively. By choosing 112 measuring points on the structure surfaces, we performed a series of impact tests for the following cases, (a) The cylinder head and the bedplate were fastened to the cylinder block by two sets of ISO M10 Tap-bolts, each with the lengths l1=117mm and l2=97mm. (b) The cylinder head and the bedplate were fastened to the cylinder block together by a set of ISO M10 Through-bolts of grip length l3=380mm.
Technical Paper

Numerical Calculation of Spray Mixing Process in a D.I. Diesel Engine and Comparison with Experiments

1995-02-01
950853
Three dimensional computational model has been developed to predict the macroscopic behavior of the fuel spray in D. I. diesel engines. The model was based on the KIVA-II code with modification of some submodels that it can deal with the observed phenomena such as liquid column near the nozzle tip and spray impingement on a wall. Firstly, this model was verified by comparing the prediction with the experimental results in a constant volume vessel. Secondly with application to a D.I. diesel engine, the detailed behavior of the spray in a combustion chamber was revealed. Moreover, the engine performance under different spray angles were discussed with the prediction of this model.
Technical Paper

Parametric Study and Clarification of Determination Factors of Diesel Exhaust Emission Using a Single Cylinder Engine and Model Fuels - JCAP Combustion Analysis Working Group Report Part I

2002-10-21
2002-01-2824
Single cylinder engine testing was carried out to clearly understand the test results of multi-cylinder engines reported by the Diesel WG in JCAP (Japan Clean Air Program) (1), (2), (3) and (4). In this tests, engine specifications such as fuel injection pressure, nozzle hole diameter, turbo-charging pressure, EGR rate, and fuel properties such as 1-, 2-, 3-ring aromatics content, n-,i-paraffins content, and T90 were parametrically changed and their influence on the emissions were studied. PM emission generally increased in each engine condition with increased aromatic contents and T90. In particular, multi ring aromatics brought about large increases in PM regardless of the engine conditions. The influence of fuel properties on NOx emission is smaller than the influence on PM emission. Some other fuels that have various side chain structures of 1-ring aromatics, normal paraffins only and various naphthene contents were also investigated.
Journal Article

Simultaneous Improvement of Fuel Consumption and Exhaust Emissions on a Multi-Cylinder Camless Engine

2011-04-12
2011-01-0937
Further improvement in fuel consumption is needed for diesel engines to address regulatory requirement particularly for heavy duty diesel in Japan enforced in 2015, in addition to the compliance to the regulatory requirements for exhaust emission, which seems to be more stringent in future. The authors have participated in the project of “Comprehensive Technological Development of Innovative, Next-Generation, Low-Pollution Vehicles” organized by New Energy and Industrial Technology Development Organization (NEDO), and innovative devices such as multi stage boosting system, ultra high-pressure fuel injection system and variable valve actuation (camless) system had been developed in this project from a standpoint of simultaneous improvement of fuel consumption and exhaust emission. In camless system, intake and exhaust valves are driven by hydraulic pressure. So, fully flexible setting of opening and closure timings and lift of the intake and exhaust valves is possible.
X