Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Development of a Virtual Multi-Axial Simulation Table to Enhance the Prognosis of Loads on Powertrain Mounting System During Durability Applications

2017-03-28
2017-01-0420
Vibration Isolation is the key objective of engine mounting systems in the automotive industry. A well-designed, robust engine mount must be capable of isolating the engine assembly from road-based excitations. Owing to high vibration inputs, engine mounts are susceptible to wear and failure. Thus, the durability of engine mounts is a cause for concern. A design validation methodology has been developed at Jaguar Land Rover using Multibody Dynamics (MBD) to enhance the prognosis of engine mount loads during full - vehicle durability test events. This paper describes the development of a virtual multi-axial simulation table rig (MAST Rig) to test virtual engine mount designs. For the particular example considered in this paper, a simple sinusoidal input is applied to the MAST Rig. The development of the virtual MAST Rig has been described including details of the modelling methodology.
Technical Paper

Sand Dune Impact Simulation

2017-03-28
2017-01-1318
Robustness to sand dune impact is one of the key requirements for Jaguar Land Rover products. Historically off road vehicles were built on a ladder sub frame; and the steel cross beam at the front provided robust protection for the cooling pack. With the move to monocoque construction, the cooling pack became vulnerable to low speed grounding damage. Unfortunately this vulnerability is not confirmed until later in the program when fully representative vehicles are available, which results in late engineering changes that are expensive, time consuming and stressful. Like all late changes it is rarely optimised for cost and weight. With no historic literature or procedure available, the challenge was to model the physics of sand media and also solve the complex multi-physics problem of impact of the whole vehicle with the sand dune.
Journal Article

Water Ingress Analysis and Splash Protection Evaluation for Vehicle Wading using Non-Classical CFD Simulation

2017-03-28
2017-01-1327
Physical testing of a vehicle wading through water is performed to gauge its capability to traverse through shallow to deep levels of water, wherein various vehicle performance parameters are observed, recorded and analysed. Jaguar Land Rover (JLR) has instigated and established a comprehensive CAE test procedure for assessing the same, which makes use of overset mesh (in a CFD environment) for a non-traditional approach to vehicle motion. The paper presents investigations made into the established wading physics, in order to optimise the splashing and water jet modelling. Large Scale Interface model was implemented instead of the previously standardised VOF-VOF fluid phase interaction model, and a comparison is made between the two. The implemented wheel rotation approach was scrutinised as well and appropriate inferences are drawn.
X