Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Simulation Analysis of Human Cervical Spine Motion During Low Speed Rear-End Impacts

2000-03-06
2000-01-0154
The non-physiological motions of human cervical vertebrae were analyzed in volunteer tests for rear-end impacts and were considered to be an important parameter for neck injuries. The objectives of this study are to improve the Marko de Jager neck model using volunteer test data and to analyze the influence of horizontal and vertical accelerations on cervical vertebral motion. In the beginning of this study, a neck model was positioned based on X-ray cineradiography of a volunteer. Motions of each vertebra were compared with those of volunteer test data for low speed rear-end impacts (4, 6, 8km/h). In these comparisons, the differences of vertebrae motions between the neck model and the volunteer tests were found. To improve the validity of the neck model, the connection properties and the bending properties of the upper and lower vertebrae of the model were modified to increase rigidity.
Technical Paper

A Study of Motorcycle Leg Protection

1985-01-01
856126
Researchers concerned with motorcycle occupant protection have attempted to develop ways to protect the motorcycle occupant from injury. In the hope of finding a means to protect the motorcycle occupant's lower extremities, the authors have investigated past research, designed a device that incorporates an energy-absorbing component, tested the device in a series of collisions with automobiles, and performed an analysis of the test results to assess the merits of the new device. Results show that although the device may under certain circumstances reduce lower leg injuries, there may be increased potential for upper leg, chest, and head injuries
Technical Paper

Analysis of HEV Components Efficiency on Fuel Economy

2000-04-02
2000-01-1542
A simulation has been developed at the Japan Automobile Research Institute to predict the fuel economy of HEVs, which are currently being developed in the advanced clean energy vehicle research and development project of MITI/NEDO (ACE Project). The ACE Project includes six types of HEV. The effect of hybrid components efficiency on fuel economy was evaluated by sensitivity coefficient. The results show that the fuel economy of HEVs can improve that of the base vehicle by two times. The sensitivity coefficient of the battery is largest in the FCEV, while that of the motor is largest in the series or series/parallel HEVs.
Technical Paper

Basic Characteristics of Motorcycle Riding Maneuvers of Expert Riders and Ordinary Riders

2014-11-11
2014-32-0025
ISO26262 was intended only for passenger cars but can be applied to motorcycles if the Controllability (C) is subjectively evaluated by expert riders. Expert riders evaluate motorcycle performance from the viewpoint of ordinary riders. However, riding maneuvers of ordinary riders have not been confirmed by objective data. For this reason, it is important to understand the basic characteristics of riding maneuvers of both expert and ordinary riders. This study seeks to confirm the compatibility between the riding maneuvers of expert riders and those of ordinary riders. The riding maneuvers and vehicle behavior of four expert riders and 16 ordinary riders were compared using the results of a test assuming normal running.
Technical Paper

Calculation of Hydrogen Consumption for Fuel Cell Vehicles by Exhaust Gas Formulation

2008-04-14
2008-01-0465
The hydrogen consumption of fuel cell vehicles (FCV) can be measured by the gravimetric, pressure and flow methods within a ±1% error. These are the methods acknowledged by ISO and SAE [1, 2], but require the test vehicles to be modified in order to supply hydrogen from an external, rather than the onboard tank. Consequently, technical assistance of the vehicle manufacturer is necessary for this modification, while various components in the test vehicle must be readjusted. For these reasons, a measurement method free of vehicle modification is in great demand. The present study therefore developed an “oxygen balance method” which determines the amount of hydrogen that has reacted with oxygen in the fuel cell stack by measuring the oxygen concentration in exhaust gas.
Journal Article

Comparison of Fires in Lithium-Ion Battery Vehicles and Gasoline Vehicles

2014-04-01
2014-01-0428
Electric vehicles have become more popular and may be involved in fires due to accidents. However, characteristics of fires in electric vehicles are not yet fully understood. The electrolytic solution of lithium-battery vehicles is inflammable, so combustion characteristics and gases generated may differ from those of gasoline cars. Therefore, we conducted fire tests on lithium-ion battery vehicles and gasoline vehicles and investigated the differences in combustion characteristics and gases generated. The fire tests revealed some differences in combustion characteristics. For example, in lithium-ion battery vehicles, the battery temperature remained high after combustion of the body. However, there was almost no difference in the maximum CO concentration measured 0.5 to 1 m above the roof and 1 m from the side of the body. Furthermore, HF was not detected in either type of vehicle when measured at the same positions as for CO.
Technical Paper

Comparison of Pedestrian Subsystem Safety Tests Using Impactors and Full-Scale Dummy Tests

2002-03-04
2002-01-1021
Evaluation of car front aggressiveness in car-pedestrian accidents is typically done using sub-system tests. Three such tests have been proposed by EEVC/WG17: 1) the legform to bumper test, 2) the upper legform to bonnet leading edge test, and 3) the headform to bonnet top test. These tests were developed to evaluate performance of the car structure at car to pedestrian impact speed of 11.1 m/s (40 km/h), and each of them has its own impactor, impact conditions and injury criteria. However, it has not been determined yet to what extent the EEVC sub-system tests represent real-world pedestrian accidents. Therefore, there are two objectives of this study. First, to clarify the differences between the injury-related responses of full-scale pedestrian dummy and results of sub-system tests obtained under impact conditions simulating car-to-pedestrian accidents. Second, to propose modifications of current sub-system test methods. In the present study, the Polar (Honda R&D) dummy was used.
Journal Article

Comparison of fuel economy and exhaust emission tests of 4WD vehicles using single-axis chassis dynamometer and dual-axis chassis dynamometer

2011-08-30
2011-01-2058
The demands of application of dual-axis chassis dynamometers (4WD-CHDY) have increased recently due to the improvement of performance of 4WD-CHDY and an increase in the number of 4WD vehicles which are difficult to convert to 2WD. However, there are few evaluations of any differences between fuel economy and exhaust emission levels in the case of 2WD-CHDY with conversion from 4WD to 2WD (2WD-mode) and 4WD-CHDY without conversion to 2WD (4WD-mode). Fuel economy and exhaust emission tests of 4WD vehicle equipped with a typical 4WD mechanism were performed to investigate any differences between the case of the 2WD-mode and the 4WD-mode. In these tests, we measured ‘work at wheel’ (wheel-work) using wheel torque meters. A comparison of the 2WD-mode and the 4WD-mode reveals a difference of fuel economy (2WD-mode is 1.5% better than that of 4WD-mode) and wheel-work (2WD-mode is 3.9% less than that of 4WD-mode). However, there are almost no differences of exhaust emission levels.
Journal Article

Construction of an ISO 26262 C Class Evaluation Method for Motorcycles

2016-11-08
2016-32-0059
For applying ISO 26262 to motorcycles, controllability classification (C class evaluation) by expert riders is considered an appropriate technique. Expert riders have evaluated commercial product development for years and can appropriately conduct vehicle tests while observing safety restrictions (such as avoiding the risk of falling). Moreover, expert riders can ride safely and can stably evaluate motorcycle performance even if the test conditions are close to the limits of vehicle performance. This study aims to construct a motorcycle C class evaluation method based on an expert rider’s subjective evaluation. On the premise that expert riders can rate the C class, we improved a test procedure that used a subjective evaluation sheet as the concrete C class evaluation method for an actual hazardous event.
Technical Paper

Detailed Study of Hazard Analysis and Risk Assessment of ISO 26262 for Motorcycles

2017-11-05
2017-32-0083
ISO 26262, an international functional safety standard of electrical and/or electronic systems (E/E systems) for motor vehicles, was published in November 2011 and it is expected that the scope will be extended to motorcycles in a second edition of ISO 26262 going to be published in 2018. ISO/DIS 26262 second edition published in 2016 has Part 12 as a new part in order to apply ISO 26262 to motorcycle. Proper estimation of Exposure, Controllability, and Severity in accordance with ISO/DIS 26262 Part 12, are key factors to determine Motorcycle Safety Integrity Level. To estimate precise these factors, there would be a case that it might not be appropriate to apply studies done for passenger car to motorcycle, and it would be necessary to apply motorcycle specific knowledge and estimation methods. In our previous studies we clarified these motorcycle specific issues and studied the method for the adaptation.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2008-04-14
2008-01-0725
The SAE FCV Safety Working Group has been addressing fuel cell vehicle (FCV) safety for over 8 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable to FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. J2578 is currently being updated to clarify and update requirements so that it will continue to be relevant and useful in the future. An update to SAE J1766 for post-crash electrical safety was also published to reflect unique aspects of FCVs and to harmonize electrical requirements with international standards. In addition to revising SAE J2578 and J1766, the Working Group is also developing a new Technical Information Report (TIR) for vehicular hydrogen systems (SAE J2579).
Technical Paper

Developing Safety Standards for FCVs and Hydrogen Vehicles

2010-04-12
2010-01-0131
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 10 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards associated with the integration of hydrogen and electrical systems onto the vehicle and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. An update to SAE J1766 for post-crash electrical safety was also published in 2008 to reflect unique aspects of FCVs and to harmonize electrical requirements with international standards. In addition to SAE J2578 and J1766, the SAE FCV Safety Working Group also developed a Technical Information Report (TIR) for vehicular hydrogen systems (SAE J2579).
Technical Paper

Development and Validation of the Finite Element Model for the Human Lower Limb of Pedestrians

2000-11-01
2000-01-SC22
An impact test procedure with a legform addressing lower limb injuries in car-pedestrian accidents has been proposed by EEVC/WG17. Although a high frequency of lower limb fractures is observed in recent accident data, this test procedure assesses knee injuries with a focus on trauma to the ligamentous structures. The goal of this study is to establish a methodology to understand injury mechanisms of both ligamentous damages and bone fractures in car-pedestrian accidents. A finite element (FE) model of the human lower limb was developed using PAM-CRASH™. The commercially available H-Dummy™ lower limb model developed by Nihon ESI for a seated position was modified to represent the standing posture of pedestrians. Mechanical properties for both bony structures and knee ligaments were determined from our extensive literature survey, and were carefully implemented in the model considering their strain rate dependency in order to simulate the dynamic response of the lower limb accurately.
Technical Paper

Development and Verification of a Computer Simulation Model of Motorcycle-to-Vehicle Collisions

1999-03-01
1999-01-0719
In order to establish a systematic approach to the study on the injuries sustained by motorcycle riders in accidents and the assessment of protective devices fitted to motorcycles, this research develops a computer simulation model of motorcycle-to-vehicle collision model based on multibody kinematics and dynamics using MADYMO (MAthematical DYnamic MOdel). The effectiveness of the motorcycle-to-vehicle crash model is verified using data of 14 full-scale tests. Comparisons between the simulation peak head acceleration results and the full-scale crash tests data demonstrate a satisfactory agreement between them. The simulation results along with the test data indicate that the leg protectors fitted to the motorcycle can induce harmful consequences to the rider head in some configurations, regardless of their aimed protective effects on the rider’s legs. The findings obtained in this study also provide basis for further improvement of the current model.
Technical Paper

Development of Electric Commuter Concept Car “C-ta”

2011-05-17
2011-39-7220
It is becoming more and more necessary to achieve a sustainable low-carbon society by mobility not depending on oil. Electric vehicles are appropriate for such a society, but expensive battery cost and long charging time prohibit the promotion of EVs. One of the solutions is minimizing battery usage by ultra-low fuel efficiency, so we developed an ultrahigh-efficient electric commuter concept car “C-ta”, which requires as small a battery as possible. We assumed that drivers would use the car as a second car for short-distance daily use, such as commuting, shopping, transportation of family, etc. In order to improve fuel efficiency, we mainly considered an ultra-light weight body and chassis, to which CFRP (carbon fiber reinforced plastic) greatly contributes, ultra-low rolling resistance tires, and highly accurate vehicle control technology with four in-wheel motors.
Technical Paper

Development of Fuel Consumption Measurement Method for Fuel Cell Vehicle - Flow Method corresponding to Pressure Pulsation of Hydrogen flow -

2007-07-23
2007-01-2008
Japan Automobile Research Institute (JARI) have developed the flow method as an easy way of measuring hydrogen consumption of fuel cell vehicles (FCVs) in real-time. A 2004 study on fuel consumption of five models of FCVs, measured by thermal flowmeters and based on gravimetric method, exhibited measurement errors within ±1% range for three models, but the errors were as large as -8% for two models that showed significant pulsation in hydrogen consumption flow. Assuming that the pulsation is the cause of errors in the flow method, we analyzed influences of pulsation in each flowmeter from two points (frequency and amplitude) and found that pulsation indeed caused flowmeter errors. Expansion chambers (Buffers) and throttle valves (regulators) were confirmed to have an effect in attenuating pulsation. Amplitude of pulsation shrunk to one tenths when such pulsation-reducing instruments were introduced between pulsating FCVs and flowmeters and were put to test.
Technical Paper

Development of Fuel Consumption Measurement Methods for Hydrogen Fuel Cell Vehicles

2006-04-03
2006-01-0217
Japan Automobile Research Institute has devised and evaluated the various fuel consumption measurement methods for fuel cell vehicles (FCVs). The examination covers the methods based on measurement of electrical current, hydrogen pressure/temperature, weight and flow rate that are expected to be the same accuracy and convenience as conventional measurement methods such as carbon balance method or fuel flow measurement method. As a result of examining the measurement accuracy for each method with a sonic nozzle used as a standard, it is found that both the pressure method and the weight method fulfill the target accuracy of ±1% and that the flow method is able to improve the accuracy by means of calibration with hydrogen. Also, as a result of applying each method to the fuel consumption test of FCVs, the relative error between the pressure method and weight method is within ±1%.
Technical Paper

Development of a Biofidelic Flexible Pedestrian Legform Impactor

2003-10-27
2003-22-0020
The European Enhanced Vehicle-Safety Committee (EEVC) has proposed a test procedure to assess the protection vehicles provide to the lower extremity of pedestrians during a collision. This procedure utilizes a legform impactor developed by the Transport Research Laboratory (TRL). However, the TRL Pedestrian Legform Impactor (TRL-PLI) is composed of rigid long bones (cannot simulate the bone flexibility of the human) and rather stiff knee joint. The differences lead to a lack of biofidelity of the TRL-PLI, i.e., unnaturally stiff responses are observed. This study develops a biofidelic Flexible Pedestrian Legform Impactor (Flex-PLI) that can simulate human bone flexibility and human knee joint stiffness properly. The Flex-PLI can also measure many of the injury parameters, long bone strains at multiple locations, knee ligament elongations, and the compression forces between the femoral condyles and tibial plateau in comparison to the TRL-PLI.
Journal Article

Development of an Unsteady Aerodynamic Simulator Using Large-Eddy Simulation Based on High-Performance Computing Technique

2009-04-20
2009-01-0007
A numerical method specially designed to predict unsteady aerodynamics of road vehicle was developed based on unstructured Large-Eddy Simulation (LES) technique. The code was intensively optimized for the Earth Simulator in Japan to deal with the excessive computational resources required for LES, and could treat numerical meshes of up to around 120 million elements. Moving boundary methods such as the Arbitrary Lagrangian-Eulerian (ALE) or the sliding method were implemented to handle dynamic motion of a vehicle body during aerodynamic assessment. The method can also model a gusty crosswind condition. The method was applied to three cases in which unsteady aerodynamics are expected to be crucial.
X