Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Further Study of the Vehicle Rattle Noise with Consideration of the Impact Rates and Loudness

2020-04-14
2020-01-1261
With the prevalent trend of the pure electric vehicle, vehicle interior noise has been reduced significantly. However, other noises become prominent in the cabin. Especially, the BSR noise generated by friction between parts and the clearance between components become the elements of complaints directly affect the quality of vehicles. Currently, the BSR noises are subjectively evaluated by experts, and the noise samples are simply labeled as ‘qualified’ or ‘unqualified’. Therefore, it is necessary to develop an evaluation model to assess the BSR noise objectively. In this paper, we study the vehicle rattle noise intensively. Several types of rattle noise were recorded in a semi-anechoic room. The recorded signals were then processed in the LMS test lab. to extract the single impact segments. A pool of simulated signals with different impact rates (number of impacts per second) and various loudness was synthesized for analyzation.
Technical Paper

Novel Method for Identifying and Assessing Rattle Noise on Vehicle Seatbelt Retractors Based on Time-Frequency Analysis

2021-03-04
2021-01-5015
Rattle noise as an error state of cabin noise in vehicles has become an important topic both in research and application. In engineering, the commonly used method to evaluate and detect rattle issues is greatly dependent on experts’ personal auditory perception. People judge a noise simply as “loud” and “not loud” or “qualified” and “unqualified.” A more objective method needs to be developed to eliminate the randomness of subjective evaluation. In this paper, a rig test of the seatbelt retractors was performed, and simulated random excitation was applied to the test samples through the MB vibration test bench in a semi-anechoic chamber. The rattle noises were recorded by HEAD SQuadriga II. Various methods were employed to identify and assess the severity of rattle noise on seatbelt retractors.
Technical Paper

Study of Rattle Noise in Vehicle Seat System under Different Excitation Signals and Loading Conditions

2021-02-17
2020-01-5230
The buzz, squeak, and rattle (BSR) noise in the vehicle seat system is one of the most common vehicle interior noises. The presence of the BSR noise in the seat system may affect the riding experience and cause discomfort to the occupants. Therefore, the BSR issues have gradually attracted the attention of researchers. The main problem of BSR noise evaluation is how to quantify the noise signal to realize rapid evaluation. In this paper, the impact of rattle noise is studied in the vehicle seat system. Psychoacoustic metrics, which are commonly used in vehicle BSR noise evaluation, are calculated and compared to build a vehicle seat system evaluation model. To improve the accuracy of the model, the variational mode decomposition (VMD) method is applied to decompose the original noise signal into six Intrinsic Mode Functions (IMFs) and then the energy of each IMF is weighted by the kurtosis to obtain new characteristic parameters.
X