Refine Your Search

Topic

Search Results

Journal Article

A Computational Study of the Combined Effects of EGR and Boost Pressure on HCCI Autoignition

2012-10-23
2012-32-0076
This study computationally investigates the combined effects of EGR and boost pressure on HCCI autoignition using iso-octane, PRF50 and n-heptane. The computations were conducted using the single-zone model of CHEMKIN included in CHEMKIN-PRO with detailed chemical-kinetics mechanisms for iso-octane, PRF and n-heptane from Lawrence Livermore National Laboratory (LLNL). To better reproduce the state of EGR addition in real engine, the EGR composition is determined after several combustion cycles under the constant amount of fuel. All data points were acquired with a CA50 of 5°CA aTDC by adjusting initial temperature to remove the effect of combustion phasing, which can influence on HCCI autoignition from any effect of the EGR and boost pressure themselves. The results show that EGR increases the burn duration and reduces the maximum pressure-rise rate with lower peak of maximum heat-release rates for all fuels even for a boost pressure, which accelerates a HCCI autoignition propensity.
Technical Paper

A Cycle-to-Cycle Variation Extraction Method for Flow Field Analysis in SI IC Engines Based on Turbulence Scales

2019-01-15
2019-01-0042
To adhere to stringent environmental regulations, SI (spark ignition) engines are required to achieve higher thermal efficiency. In recent years, EGR (exhaust gas recirculation) systems and lean-burn operation has been recognized as key technologies. Under such operating conditions, reducing CCV (cycle-to-cycle variation) in combustion is critical to the enhancement of overall engine performance. Flow-field CCV is one of the considerable factors affecting combustion in engines. Conventionally, in research on flow fields in SI engines, the ensemble average is used to separate the measured velocity field into a mean component and a fluctuation component, the latter of which contains a CCV component and a turbulent component. To extract the CCV of the flow field, previous studies employed spatial filter, temporal filter, and POD (proper orthogonal decomposition) methods.
Technical Paper

A Study for Generating Power on Operating Parameters of Powerpack Utilizing Linear Engine

2012-10-23
2012-32-0061
The research shows the experimental results for a free piston linear engine according to operation conditions of the linear engine and the structure of linear generator for generating electric power. The powerpack used in this paper consists of the two-stroke free piston linear engine, linear generators and air compressors. Each parameter of fuel input heat, equivalence ratio, spark timing delay, electrical resistance and air gap length were set up to identify the combustion characteristics and to examine the performance of linear engine. The linear engine was fueled with propane. In the course of all linear engine operations, intake air was inputted under the wide open throttle state. Air and fuel mass flow rate were varied by using mass flow controller and these were premixed by pre-mixing device. Subsequently, pre-mixture was directly supplied into each cylinder.
Technical Paper

A Study of the Combustion Completion on the 2-Stroke HCCI Engine with n-Butane/air Mixture - Investigation of the Composition and the Exhaust Mechanism of the Exhaust Gas -

2004-06-08
2004-01-1978
The exhaust gas composition was analyzed by gas chromatography, and combustion completion was investigated in a 2-stroke Homogeneous Charge Compression Ignition (HCCI) engine. The experiment was performed using n-Butane as a typical pure fuel to easily identify the origin of exhaust gas components. The effect of maximum gas temperature on combustion completion was investigated by both the experiment and the calculation. From the measurements of unburned n-Butane emission, the thickness of the quenching layer was estimated.
Technical Paper

A Study on Combustion Control by Using Internal and External EGR for HCCI Engines Fuelled with DME

2006-11-13
2006-32-0045
The Homogeneous Charge Compression Ignition (HCCI) engine is possible to achieve high thermal efficiency and low emissions. One of the main challenges with HCCI engines is structuring the systems to control combustion phasing, crank angle of 50% heat release (CA50), for keeping high thermal efficiency and avoiding an excessive rate of pressure rise which causes knocking, when operating conditions vary. Though some HCCI combustion control systems, for example Variable Valve Timing System and Variable Compression Ratio System, have been suggested, these control systems are complex and heavy. In this study, for the development of a lightweight and small-sized generator HCCI engine fuelled with Dimethyl Ether (DME) which is low-emission and easy to autoignite, a simple HCCI combustion control system is suggested, and the control system is evaluated experimentally.
Technical Paper

An Investigation of the Effect of Thermal Stratification on HCCI Combustion by using Rapid Compression Machine

2007-07-23
2007-01-1870
A significant drawback to HCCI engines is the knocking caused by rapid increases in pressure. Such knocking limits the capacity for high-load operation. To solve this problem, thermal stratification in the combustion chamber has been suggested as possible solution. Thermal stratification has the potential to reduce the maximum value of the rate of pressure increase combustion by affecting the local combustion start time and extending the duration of combustion. The purpose of this study was to experimentally obtain fundamental knowledge about the effect of thermal stratification on the HCCI combustion process. Experiments were conducted in a rapid compression machine (RCM) equipped with a quartz window to provide optical access to the combustion chamber. The machine was fueled with DME, n-Butane, n-Heptane and iso-Octane, all of which are currently being investigated as alternative fuels and have different low temperature characteristics.
Technical Paper

An Investigation of the Effects of Fuel Concentration Inhomogeneity on HCCI Combustion -Fuel Concentration of Pre-Mixture Using LIF measurement-

2015-09-01
2015-01-1788
HCCI (Homogeneous Charge Compression Ignition) engine has a problem which causes knocking when the maximum PRR (Pressure Rise Rate) reaches a certain level because it takes the form of combustion of simultaneous multi-point ignition by compression of the air-fuel pre-mixture. This study focused on stratified charge of fuel in combustion chamber. This method disperses the timing of local ignition. The distribution of fuel concentration is measured by using LIF (Laser Induced Fluorescence). As a result, the maximum PRR is reduced by stratified charge of fuel. In addition, it is confirmed that the dispersion of combustion timing depends on the dispersion of fuel concentration.
Technical Paper

An Investigation of the Effects of Fuel Inhomogeneity on the Pressure Rise Rate in HCCI engine using Chemiluminescence Imaging

2010-09-28
2010-32-0097
Theoretically, homogeneous charge compression engines (HCCI) are able to grant a high thermal efficiency, as well as a low NOx and particulate emissions. This ability is mainly due to the combustion process, which, contrary to both Diesel and Gasoline engine, is homogeneous in time and space within the combustion chamber. But despite these advantages, the engine operating condition is limited by the narrow boundaries of misfire at low load and knocking at high load. For that matter, one of the numerous ways of overcoming knocking is to deliberately create fuel inhomogeneities within the combustion chamber, since it has proved to lengthen combustion duration and to drastically reduce maximum pressure rise rate (PRR). Nevertheless, though the global effects of fuel inhomogeneities on PRR have been studied, we lack information that explains this phenomenon.
Technical Paper

An Investigation of the Potential of Thermal and Mixing Stratifications for Reducing Pressure Rise Rate on HCCI Combustion by using Rapid Compression Machine

2009-11-03
2009-32-0085
Thermal and mixing stratifications have been thought as one of the ways to avoid an excessive pressure rise on HCCI combustion. The purpose of this research is to investigate the potential of thermal and mixing stratifications for reducing PRR (Pressure Rise Rate) on HCCI combustion. The pre-mixture with thermal and mixing stratifications is charged in RCM (Rapid Compression Machine). After that, the pre-mixture is compressed and in that process, in-cylinder gas pressure and chemiluminescence images are obtained and analyzed. Furthermore, experimental results are compared with the computational results calculated by using multi-zone model for analyzing these mechanisms.
Technical Paper

An Investigation on DME HCCI Engine about Combustion Phase Control using EGR Stratification by Numerical Analysis

2012-10-23
2012-32-0077
This work has been investigated the potential of in-cylinder EGR stratification for reducing the pressure rise rate of DME HCCI engines, and the coupling of both thermal stratification and fuel stratification. The numerical analyses were done by using five-zone version of CHEMKIN-II kinetics rate code, and kinetic mechanics for DME. The effects of inert components were used for the presence of EGR in calculation. Three cases of EGR stratification were tested on both thermal stratification and fuel stratification at the fixed initial temperature, pressure and fueling rate at BDC. In order to explore the appropriate stratification of EGR, EGR width was employed from zero to thirty percent. Firstly, EGR homogeneity case which means EGR width zero was examined. Secondly, EGR is located densely in hotter zone for combining with thermal stratification or in richer zone for a combination with fuel stratification. Lastly, the case was judged inversely with the second case.
Technical Paper

Analysis of the Effect of Charge Inhomogeneity on HCCI Combustion by Chemiluminescence Measurement

2004-06-08
2004-01-1902
In the HCCI Engine, inhomogeneity in fuel distribution and temperature in the pre-mixture exists microscopically, and has the possibility of affecting the ignition and combustion process. In this study, the effect of charge inhomogeneity in fuel distribution on the HCCI combustion process was investigated. Two-dimensional images of the chemiluminescence were captured by using a framing camera with an optically accessible engine in order to understand the spatial distribution of the combustion. DME was used as a test fuel. By changing a device for mixing air and fuel in the intake manifold, inhomogeneity in fuel distribution in the pre-mixture was varied. The result shows that luminescence is observed in a very short time in a large part of the combustion chamber under the homogeneous condition, while luminescence appears locally with considerable time differences under the inhomogeneous condition.
Technical Paper

Analysis of the combustion dispersion mechanism in HCCI Engine

2009-11-03
2009-32-0086
Delaying CA50(Crank Angle of 50% Heat Release) of the HCCI engine to expansion stroke can lead to high indicated thermal efficiency as well as the avoidance of knocking. However, this method could induce the problem of cycle variability. In this study, the cycle-to-cycle variation of a HCCI engine fueled with DME was investigated. Experimental parameters of each cycle, such as in-cylinder temperature, pressure and gas flow rate, were recorded by fast response system, and analyzed consequently. Moreover, the interdependency between the combustion and the performance parameters were evaluated.
Technical Paper

Basic Research on the Suitable Fuel for HCCI Engine From the Viewpoint of Chemical Reaction

2005-04-11
2005-01-0149
In this study, attention was paid to the method of mixing fuel to solve one of problems of the HCCI engine, which is the avoidance of knocking. The objectives of the work reported in this paper were to research the characteristics of HCCI combustion of the Methane/DME/air pre-mixture in the experiment and to check the oxidation reaction in two cases: when DME was used as an ignition accelerator for the Methane/air pre-picture, and when Hydrogen was used as ignition accelerator. Furthermore, from these results reference was made about basic specifications required fuel for an HCCI engine.
Technical Paper

Combined Effects of Spark Discharge Pattern and Tumble Level on Cycle-to-Cycle Variations of Combustion at Lean Limits of SI Engine Operation

2017-03-28
2017-01-0677
Improving the thermal efficiency of spark ignition (SI) engine is strongly required due to its widespread use but considerably less efficiency than that of compression ignition (CI) engine. Although lean SI engine operation can offer substantial improvements of the thermal efficiency relative to that of traditional stoichiometric SI operation, the cycle-to-cycle variations of combustion increases with the level of air dilution, and becomes unacceptable. To improve the stability of lean operation, this study examines the effects of spark discharge pattern and tumble level on cycle-to-cycle variations of combustion at lean limits. The spark discharge pattern was altered by a custom inductive ignition system using ten spark coils and the tumble level was increased by a custom adapter installed in the intake port (tumble adapter).
Technical Paper

Development of the Control System Using EGR for the HCCI Engine Running on DME

2005-10-12
2005-32-0062
Homogeneous Charge Compression Ignition (HCCI) engine attracts much attention because of its high thermal efficiency and low NOx, PM emissions. On the other hand, Di-Methyl Ether (DME) is expected as one of alternative fuel for the internal combustion engines. In this study, four-stroke HCCI engine running on DME is developed to make it realistic application in production engines. This paper shows construction of the control method using both internal EGR at high temperature and external EGR at low temperature and estimates the performance of developed HCCI engine. Besides combustion characteristics of DME and the effects of EGR are researched with experiment and numerical calculation with elementary reactions. As a result, developed HCCI engine got comparable high thermal efficiency to conventional diesel engine but much lower Indicated Mean Effective Pressure (IMEP) than that. Meanwhile it can be said that DME is suitable fuel for the HCCI engines in combustion characteristics.
Technical Paper

Effect of Degree of Unmixedness on HCCI Combustion Based on Experiment and Numerical Analysis

2006-11-13
2006-32-0046
The purpose of this study was to gain a better understanding of the effects of in-cylinder gas temperature stratification on reducing the pressure-rise rate in HCCI combustion. HCCI combustion was investigated using an optically accessible engine and direct visualization of the combustion chemiluminescence. The engine was fueled with Di-Methyl Ether. Computational work was conducted on the gas compression and expansion strokes in HCCI engine with simple 0-dimensinal multi-zones model. When fuel inhomogeneous charging in experiment, maximum heat release rate decreased. Combustion duration got longer. Maximum pressure-rise rate decreased. Chemiluminescence, of which transition was identified from the side of intake valve to the side of exhaust valve, was observed. It is need for total moderate heat release to get local moderate combustion with not overall but continuous combustion in chamber.
Technical Paper

Effect of Heat Release Pattern of Flame during Propagation on Auto-Ignition Process of End-Gas

2016-04-05
2016-01-0701
Knock is a factor hindering enhancement of the thermal efficiency of spark ignition engines, and is an unsteady phenomenon that does not necessarily occur each cycle. In addition, the heat release history of the flame also fluctuates from cycle to cycle, and the auto-ignition process of the unburned mixture (end-gas), compressed by the global increase in pressure due to release of chemical energy, is affected by this fluctuation. Regarding auto-ignition of the end-gas, which can be the origin of knock, this study focused on the fluctuation of the flame heat release pattern, and used a zero-dimensional (0D) detailed chemical reaction calculation in an attempt to analyze and examine the consequence on the end-gas compression and auto-ignition process of changes in the i) start of combustion, ii) combustion duration and iii) center of heat release of the flame.
Technical Paper

Effect of Nozzle Diameter and EGR Ratio on the Flame Temperature and Soot Formation for Various Fuels

2001-05-07
2001-01-1939
In this study, effects of nozzle hole diameter and EGR ratio on flame temperature (indication of NO formation) and KL value (indication of soot formation) were investigated. Combustion of a single diesel fuel spray in the cylinder of a rapid compression machine (RCM) was analyzed. Three nozzles with different hole diameter were used corresponding to present, near term and long term heavy duty diesel engine specifications. EGR was simulated through 2%vol. CO2 addition to the inlet air and by increase of in-cylinder surrounding gas temperature. Various types of fuels were used in this. The ignition and combustion processes of diesel fuel spray were observed by a high-speed direct photography and by indicated pressure diagrams. Flame temperature and KL factor were analyzed by a two-color method. With larger nozzle hole diameters there are larger high temperature areas. With smaller nozzle hole diameters there is more soot formed. Introduction of 2% vol.
Technical Paper

Effects of Aromatics Content and 90% Distillation Temperature of Diesel Fuels on Flame Temperature and Soot Formation

2001-05-07
2001-01-1940
In this study, the effects of fuel properties, aromatics content and 90% distillation temperature T90, on flame temperature and soot formation were studied using a rapid compression machine (RCM). Aromatics content and T90 distillation temperature were parameters isolated from influence of each other, and from cetane number. A fuel spray was injected in the RCM combustion chamber by a single nozzle hole. The ignition and combustion processes of diesel spray were observed by a high-speed direct photography. Flame temperature and KL factor (which indicates the soot concentration), were analyzed by the two-color method. The rate of heat release was analyzed from indicated diagrams. The fuels with aromatics content showed higher flame temperature. The fuel with highest T90 distillation temperature showed highest flame temperature.
Technical Paper

Effects of Spark Discharge Characteristic on Cycle-to-Cycle Variations of Combustion for Lean SI Operation with High Tumble Flow

2017-11-05
2017-32-0111
It has been shown that lean burn is effective for improving the thermal efficiency of gasoline SI engines. This happens because the reduction of heat loss by decrease of flame temperature. On the other hand, the fuel dilution of the premixed gas makes the combustion speed low, and cycle-to-cycle variations of combustion are increased by excessive dilution, it is difficult to increase the thermal efficiency of the gasoline SI engine. Influence of ignition by spark discharge is considered as a factor of combustion variation, and it is necessary to understand the effects of spark discharge characteristics on the lean combustion process. Spark discharge in the SI engines supplies energy to the premixed-gas via a discharge channel in the spark plug gap which ignites the premixed-gas. The discharge channel is elongated by in-cylinder gas flow and its behavior varies in each cycles.
X