Refine Your Search

Topic

Author

Search Results

Technical Paper

A Method to Combine a Tire Model with a Flexible Rim Model in a Hybrid MBS/FEM Simulation Setup

2011-04-12
2011-01-0186
During the last ten years, there is a significant tendency in automotive design to use lower aspect ratio tires and meanwhile also more and more run-flat tires. In appropriate publications, the influences of these tire types on the dynamic loads - transferred from the road passing wheel center into the car - have been investigated pretty well, including comparative wheel force transducer measurements as well as simulation results. It could be shown that the fatigue input into the vehicle tends to increase when using low aspect ratio tires and particularly when using run-flat tires. But which influences do we get for the loading and fatigue behavior of the respective rims? While the influences on the vehicle are relatively easy to detect by using wheel force transducers, the local forces acting on the rim flange (when for example passing a high obstacle) are much more difficult to detect (in measurement as well as in simulation).
Technical Paper

A Source-Transfer-Receiver Approach to NVH Engineering of Hybrid/Electric Vehicles

2012-11-25
2012-36-0646
Vehicles with electrified powertrains are being introduced at an increasing pace. On the level of interior sound, one is often inclined to assume that NVH problems in EV have disappeared together with the combustion engine. Three observations demonstrate that this is not the case. First of all, only the dominant engine sound disappears, not the noise from tire, wind or auxiliaries, which consequently become increasingly audible due to the removal of the broadband engine masking sound. Secondly, new noise sources like tonal sounds from the electro-mechanical drive systems emerge and often have, despite their low overall noise levels, a high annoyance rating. Thirdly, the fact that engine/exhaust sounds are often used to contribute to the “character” of the vehicle leads to an open question how to realize an appealing brand sound with EV. Hybrid vehicles are furthermore characterized by mode-switching effects, with impact on both continuity feeling and sound consistency problems.
Technical Paper

A Steel Solution for a Firewall Using a Hybrid Test/CAE Approach

2009-04-20
2009-01-1547
The firewall design of a BMW1 is optimized for interior noise and weight using a Hybrid Interior Noise Synthesis (HINS) approach. This method associates a virtual firewall with a test based body model. A vibro-acoustic model of the firewall panel, including trim elements and full vehicle boundary conditions, is used for predictions in the 40 Hz - 400 Hz range. The short calculation time of this set-up allows multiple design iterations. The firewall noise is reduced by 0.9 dB and its mass by 5.1% through structural changes. Crashworthiness is maintained at its initial level using advanced steel processing. The total interior noise shows improvement in the 90 Hz - 140 Hz range.
Technical Paper

A Test-Based Procedure for the Identification of Rack and Pinion Steering System Parameters for Use In CAE Ride-Comfort Simulations

2009-05-19
2009-01-2090
Current CAE modeling and simulation techniques in the time domain allow, by now, very accurate prediction of many ride-comfort performances of the cars. Nevertheless, the prediction of the steering wheel rotation vibration excited by, for instance, wheel unbalance or asymmetric obstacle impact, often runs into the difficulty of modeling the steering line with sufficient accuracy. For a classic rack and pinion, hydraulic assisted steering line, one of the challenges is to model the complex and non linear properties - stiffness, friction and damping - of the rack-rack case system. This paper proposes a rack model, thought for easy implementation in complex multi-body models, and an identification procedure of its parameters, based on measurements, in the operational range of the wheel unbalance excitation. The measurements have been gathered by specific tests on the components and the test set-up is also shown here.
Technical Paper

Advanced State Estimator Design for an Active Suspension

2011-01-19
2011-26-0068
Active suspension systems aim at increasing safety by improving vehicle ride and handling performance while ensuring superior passenger comfort. Good control of this active system can only be achieved by providing the control algorithm with reliable and accurate signals for the required quantities. This paper presents the design and development of a state estimator that accurately provides the information required by a sky-hook controller, using a minimum of sensors. The vehicle inertial parameters are estimated by an algorithm based on Monte Carlo simulations and anthropometric data. All state updating is performed using Kalman filters. The resulting performance enhancement has been proven during test drives.
Technical Paper

Advances in Industrial Modal Analysis

2001-03-05
2001-01-3832
One of the scientific fields where, for already more than 20 years, system identification plays a crucial role is this of structural dynamics and vibro-acoustic system optimization. The experimental approach is based on the “Modal Analysis” concept. The present paper reviews the test procedure and system identification principles of this approach. The main focus though is on the real problems with which engineers, performing modal analysis on complex structures on a daily basis, are currently confronted. The added value of several new testing approaches (laser methods, smart transducers…) and identification algorithms (spatial domain, subspace, maximum likelihood,..) for solving these problems is shown. The discussed elements are illustrated with a number of industrial case studies.
Technical Paper

Analysis of Global Dynamics of Rotating Systems like Jet Engines, with Special Emphasis on Harmonic Analysis in the Presence of Bearing with Clearances

2013-09-17
2013-01-2120
The paper presents first a description of the methods used for the analysis of global dynamics of rotating systems like jet engines but also auxiliary power units. Different methodologies are described so to model rotating parts using beam, but also Fourier multi-harmonic, three dimensional models or to take into account cyclic symmetry and multistage cyclic symmetry concepts. Advantages and disadvantages of the different model types are discussed and compared. The coupling of the rotating parts with casings and stators is then discussed both in the inertial frame and in the rotating frame. The effect on global dynamics of bearing and other linking devices is taken into account for different type of analysis from critical speed analysis, to harmonic and transient analysis. The effect of gears and gear boxes coupling different rotors (like it is the case for auxiliary power units in a jet engine) is then discussed and appropriate methods described so to model this coupling effect.
Technical Paper

Application of Energy Flow Analysis Focused on Path Visualization into Vehicle Design

2010-10-17
2010-36-0505
The development of new design tools to predict the vibro-acoustic behavior within the vehicle development process is of essential importance to achieve better products in an ever shorter timeframe. In this paper, an energy flow post-processing tool for structural dynamic analysis is presented. The method is based on the conversion of conventional finite element (FE) results into energy quantities corresponding with each of the vehicle subcomponents. Based on the global dynamic system behavior and local subcomponent descriptions, one can efficiently evaluate the energy distribution and analyze the vibro-acoustic behavior in complex structures. By using energy as a response variable, instead of conventional design variables as pressure or velocity, one can obtain important information regarding the understanding of the vibro-acoustic behavior of the system.
Technical Paper

Development of Hybrid Model for Powerplant Vibration

1999-05-17
1999-01-1656
This paper covers the application of hybrid vibro-acoustic simulation methods to shorten the design cycle of power-plant components. A comparison is made between Frequency Response Function based and Modal based algorithms for the generation of a predictive powerplant assembly model. The effectiveness of design modifications is evaluated by loading the original and modified predictive models with experimentally identified excitation forces. The procedure is validated by correlation with experimental data.
Technical Paper

ESC Hydraulic Circuit Modeling and Model Reduction in the Aim of Reaching Real Time Capability

2013-05-15
2013-36-0013
An ESC hydraulic modulator contains on/off valves and proportional valves. A complex model of one proportional valve is detailed and used as a basis for model reduction the activity index technique. One interesting aspect is that the technology of the proportional valves remains (i.e. ball valves under conical seat). As such, the parameters are physical parameters forming the ones to master (manufacturing tolerances) by the supplier to also master the dynamic behavior of the system. Once this has been done, a complete model of half an ESC braking circuit is built including the pump, the reservoir, the pipes and hoses as well as the calipers. The activity index technique is thus reused on the circuit to further reduce it to finally obtain a modeling level acceptable for real time purpose.
Journal Article

Effect of Local Mesh Refinement on Inverse Numerical Acoustics

2010-06-09
2010-01-1413
Inverse numerical acoustics is a method which reconstructs the source surface normal velocity from the sound measured in the near-field around the source. This is of particular interest when the source is rotating or moving, too light or too hot to be instrumented by accelerometers. The use of laser vibrometers is often of no remedy due to the complex shape of the source. The Inverse Numerical Acoustics technique is based on the inversion of transfer relations (Acoustic Transfer Vectors) using truncated Singular Value Decomposition (SVD). Most of the time the system is underdetermined which results in a non unique solution. The solution obtained by the truncated SVD is the minimal solution in the RMS sense. This paper is investigating the impact of non homogeneities in the mesh density (local mesh refinement) on the retrieved solution for underdetermined systems. It will be shown that if transfer quantities are inverted as such, big elements get a higher weight in the inversion.
Technical Paper

Experimental Determination of Low Frequency Noise Contributions of Interior Vehicle Body Panels in Normal Operation

1996-02-01
960194
Low frequency noise from engine- and wheel-vibrations often dominates the interior noise spectrum in vehicles. For the optimization of vehicle bodies it is necessary to know the contribution of individual body panels to sound pressures at the passengers ear. An experimental approach is presented which makes use of reciprocal acoustic transfer function measurements and surface acceleration measurements in normal road operation. This method, called Airborne Source Quantification, has been applied as a diagnostic tool to the interior noise of a four cylinder diesel engined van.
Technical Paper

Extraction of Static Car Body Stiffness from Dynamic Measurements

2010-04-12
2010-01-0228
This paper describes a practical approach to extract the global static stiffness of a body in white (BIW) from dynamic measurements in free-free conditions. Based on a limited set of measured frequency response functions (FRF), the torsional and bending stiffness values are calculated using an FRF based substructuring approach in combination with inverse force identification. A second approach consists of a modal approach whereby the static car body stiffness is deduced from a full free-free modal identification including residual stiffness estimation at the clamping and load positions. As an extra important result this approach allows for evaluating the modal contribution of the flexible car body modes to the global static stiffness values. The methods have been extensively investigated using finite element modeling data and verified on a series of body in white measurements.
Journal Article

Fatigue Life Simulation on Fiber Reinforced Composites - Overview and Methods of Analysis for the Automotive Industry

2012-04-16
2012-01-0730
The need of weight reduction for fuel reduction and CO₂ regulations enforces the use of light-weight materials for structural parts also. The importance of reinforced composites will grow in this area. While the structural behavior and the simulation up to high strain-rate processes for those materials have been in the focus of investigation for many years, nowadays the simulation of high cycle fatigue behavior is getting important as well. Efficient fatigue analysis for metals was developed by understanding the microscopic behavior (crack nucleation and initiation) and bringing it to the macroscopic level by combining it with the matching test data (SN curves, etc.). Similar approaches can be applied to composite materials as well.
Technical Paper

Gear Mesh Excitation Models for Assessing Gear Rattle and Gear Whine of Torque Transmission Systems with Planetary Gear Sets

2007-05-15
2007-01-2245
This paper presents four methodologies for modeling gear mesh excitations in simple and compound planetary gear sets. The gear mesh excitations use simplified representations of the gear mesh contact phenomenon so that they can be implemented in a numerically efficient manner. This allows the gear mesh excitations to be included in transmission system-level, multibody dynamic models for the assessment of operating noise and vibration levels. After presenting the four approaches, a description is made regarding how they have been implemented in software. Finally, example models are used to do a comparison between the methods
Technical Paper

Identification, Quantification and Reduction of Structural- Borne Road Noise in a Mid-Size Passenger Car

1996-02-01
960195
This paper presents the measurement & analysis procedures and the results of a complete road noise identification and reduction project on a midsize passenger car. Operational interior noise signals and structural accelerations are measured for several test conditions. The operating data are decomposed into sets of mathematically independent phenomena by Principal Component Analysis. Operating Deflection Shape Analysis and Transfer Path Analysis are applied to each of these independent phenomena. Critical transfer paths are thus identified and quantified. The interior sound level is amplified when the frequency content of the transmitted energy coincides with structural resonances or standing waves of the interior car cavity. The vehicle is dynamically characterized by Experimental Structural Modal Analysis and by Acoustic Modal Analysis.
Technical Paper

Measuring a Geometry by Photogrammetry: Evaluation of the Approach in View of Experimental Modal Analysis on Automotive Structures

2001-04-30
2001-01-1473
The very first step when starting an experimental modal analysis project is the definition of the geometry used for visualization of the resulting mode shapes. This geometry includes measurement points with a label and corresponding coordinates, and usually also connections and surfaces to allow a good visualization of the measured mode. This step, even if it sounds straightforward, can be quite time consuming and is often done in a rather approximate way. Photogrammetry is a technique that extracts 2D or 3D information through the process of analyzing and interpreting photographs. It is widely used for the creation of topographic maps or city maps, and more and more for quick modeling of civil engineering structures or accident reconstruction. The purpose of this paper is to evaluate the use of this technique in the context of modal testing of automotive structures.
Journal Article

Modeling and Simulation of Torsional Vibration of the Compliant Sprocket in Balance Chain Drive Systems

2008-06-23
2008-01-1529
The work presented in this paper outlines the development of a simulation model to aid in the design and development of a compliant sprocket for balancer drives. A design with dual-mass flywheel and a crank-mounted compliant chain sprocket greatly reduces interior noise levels due to chain meshing. However, experimental observations showed the compliant sprocket can enter into resonance and generate excessive vibration energy during startup. Special features are incorporated into the compliant sprocket design to absorb and dissipate this energy. Additional damper spring rate, high hysteresis and large motion angle that overlap the driving range may solve the problem during engine start-up period. This work develops a simulation model to help interpret the measured data and rank the effectiveness of the design alternatives. A Multibody dynamics system (MBS) model of the balancer chain drive has been developed, validated, and used to investigate the chain noise.
Technical Paper

Modeling the Sound Source of an Intake and Predicting the Intake Sound Pressure Level for a Motorcycle

2003-09-15
2003-32-0058
In order to accurately estimate the intake sound pressure level, it is important to improve the accuracy of the air cleaner simulation model and precisely estimate the sound source of the intake. It has been confirmed that the modeling accuracy of an air cleaner can be improved by considering the vibro-acoustic coupling. Meanwhile, the sound source of the intake depends not only on the engine specifications, but on the intake system and even the exhaust system design. In this reported example, since it is difficult to estimate the sound source of the intake only by calculation, due to the aforementioned reasons, actual measurements were carried out to define the sound source. The method is such that the sound source is modeled by acoustic impedance and volume velocity in the engine, and the acoustic impedance is measured using an impedance tube. Then, the sound pressure at the intake opening is measured.
Technical Paper

Noise Contribution Analysis at Suspension Interfaces Using Different Force Identification Techniques

2011-05-17
2011-01-1600
Road-tire induced vibrations are in many vehicles determining the interior noise levels in (semi-) constant speed driving. The understanding of the noise contributions of different connections of the suspension systems to the vehicle is essential in improvement of the isolation capabilities of the suspension- and body-structure. To identify these noise contributions, both the forces acting at the suspension-to-body connections points and the vibro-acoustic transfers from the connection points to the interior microphones are required. In this paper different approaches to identify the forces are compared for their applicability to road noise analysis. First step for the force identification is the full vehicle operational measurement in which target responses (interior noise) and indicator responses (accelerations or other) are measured.
X