Refine Your Search

Topic

Search Results

Technical Paper

An Assessment of a Sensor Network Using Bayesian Analysis Demonstrated on an Inlet Manifold

2019-04-02
2019-01-0121
Modern control strategies for internal combustion engines use increasingly complex networks of sensors and actuators to measure different physical parameters. Often indirect measurements and estimation of variables, based off sensor data, are used in the closed loop control of the engine and its subsystems. Thus, sensor fusion techniques and virtual instrumentation have become more significant to the control strategy. With the large volumes of data produced by the increasing number of sensors, the analysis of sensor networks has become more important. Understanding the value of the information they contain and how well it is extracted through uncertainty quantification will also become essential to the development of control architecture. This paper proposes a methodology to quantify how valuable a sensor is relative to the architecture. By modelling the sensor network as a Bayesian network, Bayesian analysis and control metrics were used to assess the value of the sensor.
Technical Paper

An Optical Analysis of a DISI Engine Cold Start-Up Strategy

2015-09-01
2015-01-1877
Particulate number (PN) standards in the current ‘Euro 6’ European emissions standards pose a challenge for engine designers and calibrators during the warm-up phases of cold direct injection spark ignition (DISI) engines. To achieve catalyst light-off in the shortest time, engine strategies are often employed which inherently use more fuel to attain higher exhaust temperatures. This can lead to the generation of locally fuel-rich regions within the combustion chamber and the emission of particulates. This investigation analyses the combustion structures during the transient start-up phase of an optical DISI engine. High-speed, colour 9 kHz imaging was used to investigate five important operating points of an engine start-up strategy whilst simultaneously recording in-cylinder pressure.
Technical Paper

Analytical Evaluation of Fitted Piston Compression Ring: Modal Behaviour and Frictional Assessment

2011-05-17
2011-01-1535
Piston compression rings are thin, incomplete circular structures which are subject to complex motions during a typical 4-stroke internal combustion engine cycle. Ring dynamics comprises its inertial motion relative to the piston, within the confine of its seating groove. There are also elastodynamic modes, such as the ring in-plane motions. A number of modes can be excited, dependent on the net applied force. The latter includes the ring tension and cylinder pressure loading, both of which act outwards on the ring and conform it to the cylinder bore. There is also the radial inward force as the result of ring-bore conjunctional pressure (i.e. contact force). Under transient conditions, the inward and outward forces do not equilibrate, resulting in the small inertial radial motion of the ring.
Technical Paper

Challenges and Potential of Intra-Cycle Combustion Control for Direct Injection Diesel Engines

2012-04-16
2012-01-1158
The injection timing of a Diesel internal combustion engine typically follows a prescribed sequence depending on the operating condition using open loop control. Due to advances in sensors and digital electronics it is now possible to implement closed loop control based on in cylinder pressure values. Typically this control action is slow, and it may take several cycles or at least one cycle (cycle-to-cycle control). Using high speed sensors, it becomes technically possible to measure pressure deviations and correct them within the same cycle (intra-cycle control). For example the in cylinder pressure after the pilot inject can be measured, and the timing of the main injection can be adjusted in timing and duration to compensate any deviations in pressure from the expected reference value. This level of control can significantly reduce the deviations between cycles and cylinders, and it can also improve the transient behavior of the engine.
Technical Paper

Comparison between Unthrottled, Single and Two-valve Induction Strategies Utilising Direct Gasoline Injection: Emissions, Heat-release and Fuel Consumption Analysis

2008-06-23
2008-01-1626
For a spark-ignition engine, the parasitic loss suffered as a result of conventional throttling has long been recognised as a major reason for poor part-load fuel efficiency. While lean, stratified charge, operation addresses this issue, exhaust gas aftertreatment is more challenging compared with homogeneous operation and three-way catalyst after-treatment. This paper adopts a different approach: homogeneous charge direct injection (DI) operation with variable valve actuations which reduce throttling losses. In particular, low-lift and early inlet valve closing (EIVC) strategies are investigated. Results from a thermodynamic single cylinder engine are presented that quantify the effect of two low-lift camshafts and one standard high-lift camshaft operating EIVC strategies at four engine running conditions; both, two- and single-inlet valve operation were investigated. Tests were conducted for both port and DI fuelling, under stoichiometric conditions.
Technical Paper

Control-Oriented Dynamics Analysis for Electrified Turbocharged Diesel Engines

2016-04-05
2016-01-0617
Engine electrification is a critical technology in the promotion of engine fuel efficiency, among which the electrified turbocharger is regarded as the promising solution in engine downsizing. By installing electrical devices on the turbocharger, the excess energy can be captured, stored, and re-used. The electrified turbocharger consists of a variable geometry turbocharger (VGT) and an electric motor (EM) within the turbocharger bearing housing, where the EM is capable in bi-directional power transfer. The VGT, EM, and exhaust gas recirculation (EGR) valve all impact the dynamics of air path. In this paper, the dynamics in an electrified turbocharged diesel engine (ETDE), especially the couplings between different loops in the air path is analyzed. Furthermore, an explicit principle in selecting control variables is proposed. Based on the analysis, a model-based multi-input multi-output (MIMO) decoupling controller is designed to regulate the air path dynamics.
Journal Article

Crankcase Sampling of PM from a Fired and Motored Compression Ignition Engine

2011-09-11
2011-24-0209
Crankcase emissions are a complex mixture of combustion products and aerosol generated from lubrication oil. The crankcase emissions contribute substantially to the total particulate matter (PM) emitted from an engine. Environment legislation demands that either the combustion and crankcase emissions are combined to give a total measurement, or the crankcase gases are re-circulated back into the engine. There is a lack of understanding regarding the physical processes that generate crankcase aerosols, with a paucity of information on the size/mass concentrations of particles present in the crankcase. In this study the particulate matter crankcase emissions were measured from a fired and motored 4-cylinder compression ignition engine at a range of speeds and crankcase locations.
Technical Paper

Development of a Validated CFD Process for the Analysis of Inlet Manifold Flows with EGR

2002-03-04
2002-01-0071
Exhaust Gas Recirculation (EGR) is one of several technologies that are being investigated to deliver future legislative emissions targets for diesel engines. Its application requires a detailed understanding of the thermo-fluidic processes within the engine's air system. A validated Computational Fluid Dynamics (CFD) process is one way of providing this understanding. This paper describes a CFD process to analyse unsteady manifold flows and mixing fields in the presence of realistic levels of EGR. The validation methodology was drawn from the American Institute of Aeronautics and Astronautics (AIAA) and divides the problem into smaller elemental problems. Detailed knowledge about these elemental problems is easily attainable, reducing the requirement for a large number of complex validation runs. The final validated process was compared to flow visualization and particle image velocimetry (PIV) data collected from a motored engine.
Technical Paper

Effect of Compression Ring Elastodynamics Behaviour upon Blowby and Power Loss

2014-04-01
2014-01-1669
The automotive industry is subject to increasing pressure to reduce the CO2 emissions and improve fuel efficiency in internal combustion engines. Improvements may be achieved in a number of ways. The parasitic losses throughout the engine cycle emanate from friction in all engine contact conjunctions in addition to pumping losses. In particular one main contributory conjunction is the piston ring pack assembly. At low engine speeds, the contribution of friction to the total losses within the engine is increased significantly compared with the thermodynamic losses. Additionally, the sealing capability of the ring is crucial in determining the power output of the engine with any loss of sealing contributing to power loss, as well as blowby. Most reported studies on compression ring-cylinder conjunction do not take into account complex ring in-plane and out-of-plane elastodynamics.
Journal Article

Experimental Interpretation of Compression Ignition In-Cylinder Flow Structures

2020-04-14
2020-01-0791
Understanding and predicting in-cylinder flow structures that occur within compression-ignition engines is vital if further optimisation of combustion systems is to be achieved. To enable this prediction, fully validated computational models of the complex turbulent flow-fields generated during the intake and compression process are needed. However, generating, analysing and interpreting experimental data to achieve this validation remains a complex challenge due to the variability that occurs from cycle to cycle. The flow-velocity data gathered in this study, obtained from a single-cylinder CI engine with optical access using high-speed PIV, demonstrates that significantly different structures are generated over different cycles, resulting in the mean flow failing to adequately reflect the typical flow produced in-cylinder.
Technical Paper

In-Cylinder Flow Structure Analysis by Particle Image Velocimetry Under Steady State Condition

2012-09-24
2012-01-1975
This paper deals with experimental investigations of the in-cylinder flow structures under steady state conditions utilizing Particle Image Velocimetry (PIV). The experiments have been conducted on an engine head of a pent-roof type (Lotus) for a number of fixed valve lifts and different inlet valve configurations at two pressure drops, 250mm and 635mm of H2O that correlate with engine speeds of 2500 and 4000 RPM respectively. From the two-dimensional in-cylinder flow measurements, a tumble flow analysis is carried out for six planes parallel to the cylinder axis. In addition, a swirl flow analysis is carried out for one horizontal plane perpendicular to the cylinder axis at half bore downstream from the cylinder head (44mm). The results show the advantage of using the planar technique (PIV) for investigating the complete flow structures developed inside the cylinder.
Journal Article

Insights into Cold-Start DISI Combustion in an Optical Engine Operating at −7°C

2013-04-08
2013-01-1309
Particulate Matter (PM) emissions reduction is an imminent challenge for Direct Injection Spark Ignition (DISI) engine designers due to the introduction of Particulate Number (PN) standards in the proposed Euro 6 emissions legislation aimed at delivering the next phase of air quality improvements. An understanding of how the formation of combustion-derived nanoparticulates in engines is affected by the engine operating temperature is important for air quality improvement and will influence future engine design and control strategies. This investigation has examined the effect on combustion and PM formation when reducing the engine operating temperature to -7°C. A DISI single-cylinder optical research engine was modified to simulate a range of operating temperatures down to the proposed -7°C.
Technical Paper

Measurement of Air Flow Around an Inlet Valve Using a Pitot Probe

1998-02-23
980142
This paper describes a detailed study into the use of a pitot probe to measure air flow around an inlet valve under steady state conditions. The study was undertaken to assess the feasibility of the method for locating areas of a port and valve which may be contributing to a poor overall discharge coefficient. This method would provide a simple and cheap experimental tool for use throughout the industry. The method involves mounting a miniature internal chamfer pitot tube on a slider attached to the base of the valve. The probe can traverse the appropriate area by rotating the valve and moving it along the slide. Changing the probe allows measurements in different planes, allowing the whole region around the valve to be surveyed. The cylinder head complete with instrumentation is mounted on a steady flow rig. The paper presents the results obtained at different valve lifts on a production cylinder head.
Technical Paper

Mode Transition Optimisation for Variable Displacement Engines

2016-04-05
2016-01-0619
The deactivation of one or more cylinders in internal combustion engines has long been established in literature as a means of reducing engine pumping losses and thereby improving brake specific fuel consumption. As down-sizing and down-speeding of modern engines becomes more extreme, drivability issues associated with mode transition become more acute and need to be managed within a suitable calibration framework. This paper presents methodology by which a calibration may be deduced for optimal mode-transitioning in respect of minimising the torque disturbance as cylinders are deactivated and re-activated. At the outset of this study a physics based engine model is used to investigate the key parameters that influence the transition. Having understood these, experiments are designed to establish the level of mode transition disturbance using quantitative statistical indicators such that the cost function may be defined and an optimisation undertaken.
Technical Paper

Optical Diagnostics and CFD Validation of Jacket Cooling System Filling and the Occurrence of Trapped Air

2012-04-16
2012-01-1213
This paper reports the findings from an experimental investigation of the engine cooling jacket filling process for a medium duty off-highway diesel engine to characterise the physical processes that lead to the occurrence of trapped air. The motivation for the project was to provide knowledge and data to aid the development of a computational design tool capable of predicting the amount and location of trapped air in a cooling circuit following a fill event. To quantify the coolant filling process, a transparent replica of a section of the cylinder head cooling core was manufactured from acrylic to allow the application of optical diagnostic techniques. Experimentation has characterised the coolant filling process through the use of three optical techniques. These include the two established methods of High-Speed Imaging and Particle Image Velocimetry (PIV), as well as a novel approach developed for tracking the liquid-air interface during the fill event.
Technical Paper

The Effect of Cylinder De-Activation on Thermo-Friction Characteristics of the Connecting Rod Bearing in the New European Drive Cycle (NEDC)

2014-06-30
2014-01-2089
This paper presents an investigation of Cylinder De-Activation (CDA) technology on the performance of big end bearings. A multi-physics approach is used in order to take into account more realistic dynamic loading effects on the tribological behavior. The power loss, minimum film thickness and maximum temperature of big end bearings have been calculated during maneuver pertaining to the New European Driving Cycle (NEDC). Results show that bearing efficiency runs contrary to efficiency gained through combustion and pumping losses. Under CDA mode, the power loss of big end bearings is more than the power loss under engine normal mode. The problem is predominant at higher engine speeds and higher Brake mean Effective Pressures (BMEP) in active cylinders. It is also observed that the minimum film thickness is reduced under the CDA mode. This can affect wear performance. In addition, same behavior is noted for the maximum temperature rise which is higher under CDA.
Technical Paper

The Effect of EGR on Diesel Engine Wear

1999-03-01
1999-01-0839
As part of an ongoing programme of Exhaust Gas Recirculation (EGR) wear investigations, this paper reports a study into the effect of Exhaust Gas Recirculation, and a variety of interacting factors, on the wear rate of the top piston ring and the liner top ring reversal point on a 1.0 litre/cylinder medium duty four cylinder diesel engine. Thin Layer Activation (TLA - also known as Surface Layer Activation in the US) has been used to provide individual wear rates for these components when engine operating conditions have been varied. The effects of oil condition, EGR level, fuel sulphur content and engine coolant temperature have been investigated at one engine speed at full load. The effects of engine load and uncooled EGR have also been assessed. The effects of these parameters on engine wear are presented and discussed. When EGR was applied a significant increase in wear was observed at EGR levels of between 10% and 15%.
Technical Paper

The Measurement of Liner - Piston Skirt Oil Film Thickness by an Ultrasonic Means

2006-04-03
2006-01-0648
The paper presents a novel method for the measurement of lubricant film thickness in the piston-liner contact. Direct measurement of the film in this conjunction has always posed a problem, particularly under fired conditions. The principle is based on capturing and analysing the reflection of an ultrasonic pulse at the oil film. The proportion of the wave amplitude reflected can be related to the thickness of the oil film. A single cylinder 4-stroke engine on a dyno test platform was used for evaluation of the method. A piezo-electric transducer was bonded to the outside of the cylinder liner and used to emit high frequency short duration ultrasonic pulses. These pulses were used to determine the oil film thickness as the piston skirt passed over the sensor location. Oil films in the range 2 to 21 μm were recorded varying with engine speeds. The results have been shown to be in agreement with detailed numerical predictions.
Technical Paper

Tribodynamics of a New De-Clutch Mechanism Aimed for Engine Downsizing in Off-Road Heavy-Duty Vehicles

2017-06-05
2017-01-1835
Clutches are commonly utilised in passenger type and off-road heavy-duty vehicles to disconnect the engine from the driveline and other parasitic loads. In off-road heavy-duty vehicles, along with fuel efficiency start-up functionality at extended ambient conditions, such as low temperature and intake absolute pressure are crucial. Off-road vehicle manufacturers can overcome the parasitic loads in these conditions by oversizing the engine. Caterpillar Inc. as the pioneer in off-road technology has developed a novel clutch design to allow for engine downsizing while vehicle’s performance is not affected. The tribological behaviour of the clutch will be crucial to start engagement promptly and reach the maximum clutch capacity in the shortest possible time and smoothest way in terms of dynamics. A multi-body dynamics model of the clutch system is developed in MSC ADAMS. The flywheel is introducing the same speed and torque as the engine (represents the engine input to the clutch).
Technical Paper

Two-Colour Pyrometry Measurements of Low-Temperature Combustion using Borescopic Imaging

2021-04-06
2021-01-0426
Low temperature combustion (LTC) of diesel fuel offers a path to low engine emissions of nitrogen oxides (NOx) and particulate matter (PM), especially at low loads. Borescopic optical imaging offers insight into key aspects of the combustion process without significantly disrupting the engine geometry. To assess LTC combustion, two-colour pyrometry can be used to quantify local temperatures and soot concentrations (KL factor). High sensitivity photo-multiplier tubes (PMTs) can resolve natural luminosity down to low temperatures with adequate signal-to-noise ratios. In this work the authors present the calibration and implementation of a borescope-based system for evaluating low luminosity LTC using spatially resolved visible flame imaging and high-sensitivity PMT data to quantify the luminous-area average temperature and soot concentration for temperatures from 1350-2600 K.
X