Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Combustion Chambers for Natural Gas SI Engines Part I: Fluid Flow and Combustion

1995-02-01
950469
The most economical way to convert truck and bus DI-diesel engines to natural gas operation is to replace the injector with a spark plug and modify the combustion chamber in the piston crown for spark ignition operation. The modification of the piston crown should give a geometry well suited for spark ignition operation with the original swirling inlet port. Ten different geometries were tried on a converted VOLVO TD102 engine and a remarkably large difference in the rate of combustion was noted between the chambers. To find an explanation for this difference a cycle resolved measurement of the in-cylinder mean velocity and turbulence was performed with Laser Doppler Velocimetry (LDV). The results show a high correlation between in cylinder turbulence and rate of heat release in the main part of combustion.
Technical Paper

Comparison Between In-Cylinder PIV Measurements, CFD Simulations and Steady-Flow Impulse Torque Swirl Meter Measurements

2003-10-27
2003-01-3147
In-cylinder flow measurements, conventional swirl measurements and CFD-simulations have been performed and then compared. The engine studied is a single cylinder version of a Scania D12 that represents a modern heavy-duty truck size engine. Bowditch type optical access and flat piston is used. The cylinder head was also measured in a steady-flow impulse torque swirl meter. From the two-dimensional flow-field, which was measured in the interval from -200° ATDC to 65° ATDC at two different positions from the cylinder head, calculations of the vorticity, turbulence and swirl were made. A maximum in swirl occurs at about 50° before TDC while the maximum vorticity and turbulence occurs somewhat later during the compression stroke. The swirl centre is also seen moving around and it does not coincide with the geometrical centre of the cylinder. The simulated flow-field shows similar behaviour as that seen in the measurements.
Technical Paper

Cylinder-to-Cylinder and Cycle-to-Cycle Variations at HCCI Operation With Trapped Residuals

2005-04-11
2005-01-0130
A naturally aspirated in-line six-cylinder 2.9-litre Volvo engine is operated in Homogeneous Charge Compression Ignition (HCCI) mode, using camshafts with low lift and short duration generating negative valve overlap. Standard port fuel injection is used and pistons and cylinder head are unchanged from the automotive application. HCCI through negative valve overlap is recognized as one of the possible implementation strategies of HCCI closest to production. It is important to gain knowledge of the constraints and limits on the possible operating region. In this work, the emphasis is on investigating how cycle-to-cycle and cylinder-to-cylinder deviations limit the operating region, how these effects change in different parts of the operating region and how they can be controlled. At low load the cycle-to-cycle phenomena cause periodic behavior in combustion timing; together with cylinder deviations this is found responsible for decreasing the operating regime.
Technical Paper

Demonstrating the Multi Fuel Capability of a Homogeneous Charge Compression Ignition Engine with Variable Compression Ratio

1999-10-25
1999-01-3679
The potential of a Homogeneous Charge Compression Ignition (HCCI) engine with variable compression ratio has been experimentally investigated. The experiments were carried out in a single cylinder engine, equipped with a modified cylinder head. Altering the position of a secondary piston in the cylinder head enabled a change of the compression ratio. The secondary piston was controlled by a hydraulic system, which was operated from the control room. Dual port injection systems were used, which made it possible to change the ratio of two different fuels with the engine running. By mixing iso-octane with octane number 100 and normal heptane with octane number 0, it was possible to obtain any octane rating between 0 and 100. By using an electrical heater for the inlet air, it was possible to adjust the inlet air temperature to a selected value.
Technical Paper

Effect of Inhomogeneities in the End Gas Temperature Field on the Autoignition in SI Engines

2000-03-06
2000-01-0954
This paper reports an one–dimensional modeling procedure of the hot spot autoignition with a detailed chemistry and multi–species transport in the end gas in an SI engine. The governing equations for continuity of mass, momentum, energy and species for an one–dimensional, unsteady, compressible, laminar, reacting flow and thermal fields are discretized and solved by a fully implicit method. A chemical kinetic mechanism is used for the primary reference fuels n–heptane and iso–octane. This mechanism contains 510 chemical reactions and 75 species. The change of the cylinder pressure is calculated from both flame propagation and piston movement. The turbulent velocity of the propagating flame is modeled by the Wiebe function. Adiabatic conditions, calculated by minimizing Gibb's free energy at each time step, are assumed behind the flame front in the burned gas.
Technical Paper

Fuel Distribution in an Air Assist Direct Injected Spark Ignition Engine with Central Injection and Spark Plug Measured with Laser Induced Fluorescence

2000-06-19
2000-01-1898
The fuel distribution in an air assist direct injection engine was measured with Planar Laser Induced Fluorescence, PLIF. The engine was fueled with isooctane and 3-pentanon was used as the fuel tracer. The optical engine was of the prolonged piston type, with a quartz ring in the upper part of the cylinder. Both the fuel injector and the spark plug were centrally located in the cylinder head. Two different pistons were examined: flat piston and bowl in piston. Results show that the differences in fuel stratification are very large for the flat piston compared to the piston with a bowl.
Technical Paper

Homogeneous Charge Compression Ignition (HCCI) Using Isooctane, Ethanol and Natural Gas - A Comparison with Spark Ignition Operation

1997-10-01
972874
The Homogeneous Charge Compression Ignition (HCCI) is the third alternative for combustion in the Internal Combustion (IC) engines. Here, a homogeneous charge is used as in a spark ignited engine but the charge is compressed to auto-ignition as in a diesel. The characteristics of HCCI were compared to SI using a 1.6 liter single cylinder engine with compression ratio 21:1 in HCCI mode and 12:1 in SI mode. Three different fuels were used; isooctane, ethanol and natural gas. Some remarkable results were noted in the experiments: The indicated efficiency of HCCI was much better than for SI operation. Very little NOx was generated with HCCI, eliminating the need for a LeanNOx catalyst. However, HCCI generated more HC and CO than SI operation. Stable and efficient operation with HCCI could be obtained with λ=3 to λ=9 using isooctane or ethanol. Natural gas, with a higher octane number, required a richer mixture to run in HCCI mode.
Technical Paper

Investigation of Boundary Layer Behaviour in HCCI Combustion using Chemiluminescence Imaging

2005-10-24
2005-01-3729
A five-cylinder diesel engine, converted to a single cylinder operated optical engine is run in Homogeneous Charge Compression Ignition (HCCI) mode. A blend of iso-octane and n-heptane is used as fuel. An experimental study of the horizontal boundary layer between the main combustion and the non-reacting surface of the combustion chamber is conducted as a function of speed, load, swirl and injection strategy. The combustion behaviour is monitored by chemiluminescence measurements. For all cases an interval from -10 to 16 crank angles after top dead center (CAD ATDC) in steps of one CAD are studied. One image-intensified camera observes the boundary layer up close from the side through a quartz cylinder liner while a second camera has a more global view from below to see more large scale structure of the combustion. The averaged chemiluminescence intensity from the HCCI combustion is seen to scale well with the rate of heat release.
Technical Paper

Investigation of End-Gas Temperature and Pressure Increases in Gasoline Engines and Relevance for Knock Occurrence

1997-05-01
971671
A detailed analysis of the end-gas temperature and pressure in gasoline engines has been performed. This analysis leads to a simplified zero-dimensional model, that considers both, the compression and the expansion of the end-gas by the piston movement, and the compression by the flame front. If autoignition occurs in the end-gas the sudden rise of the pressure and the heat release is calculated. The rate form of the first law of thermodynamics for a control volume combined with the mass conservation equation for an unsteady and a uniform-flow process are applied. The heat of formation in the end-gas due to the chemical activity has been taken into account. In addition, a chemical kinetic model has been applied in order to study the occurrence of autoignition and prediction of knock.
Technical Paper

Knock in Spark-Ignition Engines: End-Gas Temperature Measurements Using Rotational CARS and Detailed Kinetic Calculations of the Autoignition Process

1997-05-01
971669
Cycle-resolved end-gas temperatures were measured using dual-broadband rotational CARS in a single-cylinder spark-ignition engine. Simultaneous cylinder pressure measurements were used as an indicator for knock and as input data to numerical calculations. The chemical processes in the end-gas have been analysed with a detailed kinetic mechanism for mixtures of iso-octane and n-heptane at different Research Octane Numbers (RON'S). The end-gas is modelled as a homogeneous reactor that is compressed or expanded by the piston movement and the flame propagation in the cylinder. The calculated temperatures are in agreement with the temperatures evaluated from CARS measurements. It is found that calculations with different RON'S of the fuel lead to different levels of radical concentrations in the end-gas. The apperance of the first stage of the autoignition process is marginally influenced by the RON, while the ignition delay of the second stage is increased with increasing RON.
Technical Paper

Piston Temperature Measurement by Use of Thermographic Phosphors and Thermocouples in a Heavy-Duty Diesel Engine Run Under Partly Premixed Conditions

2005-04-11
2005-01-1646
Piston temperature experiments were conducted in a single-cylinder heavy-duty Diesel research engine, based on the Volvo Powertrain D12C engine both by use of optical temperature sensitive phosphor and of thermocouples mounted on the piston surface. In the former case, a thin coating of a suitable thermographic phosphor was applied to the areas on the piston surface to be investigated. The optical measurements of piston temperatures made involved use of an optical window and of an endoscope. The possibility of using optical fibres into guide light in and out of the engine was also investigated. Results of the optical and of the thermocouple measurements were compared and were also related to more global data with the aim of exploring the use of thermographic phosphors for piston- temperature measurements in Diesel engines. Thermographic phosphors thermometry was found to represent an alternative to the thermocouple method since it easily can be applied to various piston geometries.
Technical Paper

Supercharged Homogeneous Charge Compression Ignition (HCCI) with Exhaust Gas Recirculation and Pilot Fuel

2000-06-19
2000-01-1835
In an attempt to extend the upper load limit for Homogeneous Charge Compression Ignition (HCCI), supercharging in combination with Exhaust Gas Recirculation (EGR) have been applied. Two different boost pressures were used, 1.1 bar and 1.5 bar. High EGR rates were used in order to reduce the combustion rate. The highest obtained IMEP was 16 bar. This was achieved with the higher boost pressure, at close to stoichiometric conditions and with approximately 50 % EGR. Natural gas was used as the main fuel. In the case with the higher boost pressure, iso-octane was used as pilot fuel, to improve the ignition properties of the mixture. This made it possible to use a lower compression ratio and thereby reducing the maximum cylinder pressure. The tests were performed on a single cylinder engine operated at low speed (1000 rpm). The test engine was equipped with a modified cylinder head, having a Variable Compression Ratio (VCR) mechanism.
Technical Paper

The Effect of Intake Temperature on HCCI Operation Using Negative Valve Overlap

2004-03-08
2004-01-0944
A naturally aspirated in-line six-cylinder 2.9-litre Volvo engine is operated in Homogeneous Charge Compression Ignition (HCCI) mode, using camshafts with low lift and short duration generating negative valve overlap. This implementation requires only minor modifications of the standard SI engine and allows SI operation outside the operating range of HCCI. Standard port fuel injection is used and pistons and cylinder head are unchanged from the automotive application. A heat exchanger is utilized to heat or cool the intake air, not as a means of combustion control but in order to simulate realistic variations in ambient temperature. The combustion is monitored in real time using cylinder pressure sensors. HCCI through negative valve overlap is recognized as one of the possible implementation strategies of HCCI closest to production. However, for a practical application the intake temperature will vary both geographically and from time to time.
Journal Article

UHC and CO Emissions Sources from a Light-Duty Diesel Engine Undergoing Dilution-Controlled Low-Temperature Combustion

2009-09-13
2009-24-0043
Unburned hydrocarbon (UHC) and carbon monoxide (CO) emission sources are examined in an optical, light-duty diesel engine operating under low load and engine speed, while employing a highly dilute, partially premixed low-temperature combustion (LTC) strategy. The impact of engine load and charge dilution on the UHC and CO sources is also evaluated. The progression of in-cylinder mixing and combustion processes is studied using ultraviolet planar laser-induced fluorescence (UV PLIF) to measure the spatial distributions of liquid- and vapor-phase hydrocarbon. A separate, deep-UV LIF technique is used to examine the clearance volume spatial distribution and composition of late-cycle UHC and CO. Homogeneous reactor simulations, utilizing detailed chemical kinetics and constrained by the measured cylinder pressure, are used to examine the impact of charge dilution and initial stoichiometry on oxidation behavior.
X