Refine Your Search

Topic

Author

Search Results

Technical Paper

A Brush-Model Based Semi-Empirical Tire-Model for Combined Slips

2004-03-08
2004-01-1064
This paper presents a new method to derive the tire forces for simultaneous braking and cornering, by combining empirical models for pure braking and cornering using brush-model tire mechanics. The method is aimed at simulation of vehicle handling, and is of intermediate complexity such that it may be implemented and calibrated by the end user. The brush model states that the contact patch between the tire and the road is divided into an adhesion region where the rubber is gripping the road and a sliding region where the rubber slides on the road surface. The total force generated by the tire is then composed of components from these two regions. In the proposed method the adhesion and the sliding forces are extracted from an empirical pure-slip tire model and then scaled to account for the combined-slip condition. The combined-slip self-aligning torque is described likewise.
Technical Paper

A Study of a Glow Plug Ignition Engine by Chemiluminescence Images

2007-07-23
2007-01-1884
An experimental study of a glow plug engine combustion process has been performed by applying chemiluminescence imaging. The major intent was to understand what kind of combustion is present in a glow plug engine and how the combustion process behaves in a small volume and at high engine speed. To achieve this, images of natural emitted light were taken and filters were applied for isolating the formaldehyde and hydroxyl species. Images were taken in a model airplane engine, 4.11 cm3, modified for optical access. The pictures were acquired using a high speed camera capable of taking one photo every second or fourth crank angle degree, and consequently visualizing the progress of the combustion process. The images were taken with the same operating condition at two different engine speeds: 9600 and 13400 rpm. A mixture of 65% methanol, 20% nitromethane and 15% lubricant was used as fuel.
Technical Paper

An Air Hybrid for High Power Absorption and Discharge

2005-05-11
2005-01-2137
An air hybrid is a vehicle with an ICE modified to also work as an air compressor and air motor. The engine is connected to two air reservoirs, normally the atmosphere and a high pressure tank. The main benefit of such a system is the possibility to make use of the kinetic energy of the vehicle otherwise lost when braking. The main difference between the air hybrid developed in this paper and earlier air hybrid concepts is the introduction of a pressure tank that substitutes the atmosphere as supplier of low air pressure. By this modification, a very high torque can be achieved in compressor mode as well as in air motor mode. A model of an air hybrid with two air tanks was created using the engine simulation code GT-Power. The results from the simulations were combined with a driving cycle to estimate the reduction in fuel consumption.
Technical Paper

Application of a Synchronization System for Control of Ground to Airplane Power Transfers

2004-11-02
2004-01-3211
Recent advances in the development of a more robust synchronization strategy has made it viable to propose a control system for a no-break power transfer in aerospace applications. The proposed system constitutes a combination of a multirate phase locked loop with a positive sequence detector. Synchronization to the positive sequence component, in the presence of unbalanced loads, minimizes the circulating real and reactive power. The amplitude, frequency, and phase of the airplane power source are made available. The no-break control system automatically sets the ground power unit to the frequency and phase of the aircraft power unit and adjusts its amplitude to the required level. The relays are then closed and the ground power unit is connected to the airplane load. The amplitude information is provided by an automatic gain control (AGC) loop.
Technical Paper

Behaviour of a Closed Loop Controlled Air Valve Type Mixer on a Natural Gas Fuelled Engine Under Transient Operation

1995-08-01
951911
Many current aftermarket natural gas conversions of gasoline fuelled spark ignited engines use an air-valve type mixer with closed loop control of the gas pressure. This control is often provided by an electronic integral controller that uses the output from an exhaust gas oxygen (EGO) sensor to control the duty cycle of a solenoid valve. By varying the duty cycle of this fuel control valve (FCV), the average pressure in the low pressure regulator (LPR) reference chamber and thus the gas pressure can be varied. The transient behaviour of these fuel systems is affected mainly by the mechanical response of the gas mixer and the LPR. The electronic controller can provide compensation only after the EGO sensor has detected an air-fuel ratio excursion. The main weaknesses of this type of fuel system seems to be associated with the finite response of the mixer and the LPR and by the use of an airflow dependent vacuum signal strength for control.
Technical Paper

Bluff-Body Stabilized Glow Plug Ignition of a Methanol-Fueled IDI Diesel Engine

1993-03-01
930935
Methanol, in common with other alternative fuels including natural gas and LPG, has autoignition characteristics which are poorly suited for use in compression ignition engines. Some sort of ignition assist has proven to be necessary. Considerable work has been carried out with hot surface (glow plug) ignition. The geometric relationship between the fuel injection nozzle and the glow plug is critical to achieving high efficiency and low emissions. Moreover, it is difficult to establish a single geometry which provides reliable ignition and stable operation over the entire range of engine speeds and loads. The work described in this paper investigated extending the range of operation of a particular glow plug/fuel injection nozzle geometry by placing the glow plug in the wake of a bluff body. Bluff-body flame stabilization is a well-known technique in continuous combustors. Experiments were carried out in a single-cylinder CFR cetane rating engine fueled with methanol.
Technical Paper

Combustion Chambers for Natural Gas SI Engines Part 2: Combustion and Emissions

1995-02-01
950517
The objective of this paper is to investigate how the combustion chamber design will influence combustion parameters and emissions in a natural gas SI engine. Ten different geometries were tried on a converted Volvo TD102 engine. For the different combustion chambers emissions and the pressure in the cylinder have been measured. The pressure in the cylinder was then used in a one-zone heat-release model to get different combustion parameters. The engine was operated unthrottled at 1200 rpm with different values of air/fuel ratio and EGR. The air/fuel ratio was varied from stoichiometric to lean limit. EGR values from 0 to 30% at stoichiometric air/fuel ratio were used. The results show a remarkably large difference in the rate of combustion between the chambers. The cycle-to-cycle variations are fairly independent of combustion chamber design as long as there is some squish area and the air and the natural gas are well mixed.
Technical Paper

Combustion Chambers for Natural Gas SI Engines Part I: Fluid Flow and Combustion

1995-02-01
950469
The most economical way to convert truck and bus DI-diesel engines to natural gas operation is to replace the injector with a spark plug and modify the combustion chamber in the piston crown for spark ignition operation. The modification of the piston crown should give a geometry well suited for spark ignition operation with the original swirling inlet port. Ten different geometries were tried on a converted VOLVO TD102 engine and a remarkably large difference in the rate of combustion was noted between the chambers. To find an explanation for this difference a cycle resolved measurement of the in-cylinder mean velocity and turbulence was performed with Laser Doppler Velocimetry (LDV). The results show a high correlation between in cylinder turbulence and rate of heat release in the main part of combustion.
Technical Paper

Combustion Chambers for Supercharged Natural Gas Engines

1997-02-24
970221
This work is a continuation of earlier research conducted on the effects of different combustion chambers on turbulence, combustion, emissions and efficiency for natural gas converted diesel bus engines. In this second measurement series the engine (Volvo TD102) was supercharged to enable bmep up to 18 bar at λ = 1.6-1.9. Six different combustion chambers were used. The results show that different geometrical combustion chambers, with the same compression ratio (12:1), have very different combustion performance. A high rate of heat release is favorable for lean operation, and the design of the combustion chamber is very important for the knock and misfire limits.
Technical Paper

Comparison Between In-Cylinder PIV Measurements, CFD Simulations and Steady-Flow Impulse Torque Swirl Meter Measurements

2003-10-27
2003-01-3147
In-cylinder flow measurements, conventional swirl measurements and CFD-simulations have been performed and then compared. The engine studied is a single cylinder version of a Scania D12 that represents a modern heavy-duty truck size engine. Bowditch type optical access and flat piston is used. The cylinder head was also measured in a steady-flow impulse torque swirl meter. From the two-dimensional flow-field, which was measured in the interval from -200° ATDC to 65° ATDC at two different positions from the cylinder head, calculations of the vorticity, turbulence and swirl were made. A maximum in swirl occurs at about 50° before TDC while the maximum vorticity and turbulence occurs somewhat later during the compression stroke. The swirl centre is also seen moving around and it does not coincide with the geometrical centre of the cylinder. The simulated flow-field shows similar behaviour as that seen in the measurements.
Technical Paper

Comparison of Heat Release and NOx Formation in a DI Diesel Engine Running on DME and Diesel Fuel

2001-03-05
2001-01-0651
Although there seems to be a consensus regarding the low emission potential of DME, there are still different opinions about why the low NOx emissions can be obtained without negative effects on thermal efficiency. Possible explanations are: The physical properties of DME affecting the spray and the mixture formation Different shape and duration of the heat release in combination with reduced heat losses In this paper an attempt is made to increase the knowledge of DME in relation to diesel fuel with respect to heat release and NOx formation. The emphasis has been to create injection conditions as similar as possible for both fuels. For that purpose the same injection system (CR), injection pressure (270 bar), injection timing and duration have been used for the two fuels. The only differences were the diameters of the nozzle holes, which were chosen to give the same fuel energy supply, and the physical properties of the fuels.
Technical Paper

Compression Ratio Influence on Maximum Load of a Natural Gas Fueled HCCI Engine

2002-03-04
2002-01-0111
This paper discusses the compression ratio influence on maximum load of a Natural Gas HCCI engine. A modified Volvo TD100 truck engine is controlled in a closed-loop fashion by enriching the Natural Gas mixture with Hydrogen. The first section of the paper illustrates and discusses the potential of using hydrogen enrichment of natural gas to control combustion timing. Cylinder pressure is used as the feedback and the 50 percent burn angle is the controlled parameter. Full-cycle simulation is compared to some of the experimental data and then used to enhance some of the experimental observations dealing with ignition timing, thermal boundary conditions, emissions and how they affect engine stability and performance. High load issues common to HCCI are discussed in light of the inherent performance and emissions tradeoff and the disappearance of feasible operating space at high engine loads.
Technical Paper

Concurrent Quantitative Laser-Induced Incandescence and SMPS Measurements of EGR Effects on Particulate Emissions from a TDI Diesel Engine

2002-10-21
2002-01-2715
A comparison of scanning mobility particle sizer (SMPS) and laser-induced incandescence (LII) measurements of diesel particulate matter (PM) was performed. The results reveal the significance of the aggregate nature of diesel PM on interpretation of size and volume fraction measurements obtained with an SMPS, and the accuracy of primary particle size measurements by LII. Volume fraction calculations based on the mobility diameter measured by the SMPS substantially over-predict the space-filling volume fraction of the PM. Correction algorithms for the SMPS measurements, to account for the fractal nature of the aggregate morphology, result in a substantial reduction in the reported volume. The behavior of the particulate volume fraction, mean and standard deviation of the mobility diameter, and primary particle size are studied as a function of the EGR for a range of steady-state engine speeds and loads for a turbocharged direct-injection diesel engine.
Technical Paper

Cylinder to Cylinder and Cycle to Cycle Variations in a Six Cylinder Lean Burn Natural Gas Engine

2000-06-19
2000-01-1941
The cylinder to cylinder and cycle to cycle variations were measured in a production type Volvo natural gas engine. Cylinder pressure was measured in all six cylinders. Emission measurements were performed individually after all cylinders, and commonly after the turbocharger. Measurements (ECE R49 13-mode) were performed with different spark gap and two different locations for fuel injection, one before the throttle and one before the turbocharger. Heat-release and lambda calculations show substantial cylinder to cylinder variations, due to lambda variations between the cylinders. The slow burn combustion chamber, with low turbulence, results in high cycle to cycle variations (> 100% COV imep) for some of the load cases.
Technical Paper

Development of High Speed Spectroscopic Imaging Techniques for the Time Resolved Study of Spark Ignition Phenomena

2000-10-16
2000-01-2833
This paper reports on the development of novel time resolved spectroscopic imaging techniques for the study of spark ignition phenomena in combustion cells and an SI-engine. The techniques are based on planar laser induced fluorescence imaging (PLIF) of OH radicals, on fuel tracer PLIF, and on chemiluminescence. The techniques could be achieved at repetition rates reaching several hundreds of kilo-Hz and were cycle resolved. These techniques offer a new path along which engine related diagnostics can be undertaken, providing a wealth of information on turbulent spark ignition.
Technical Paper

Durable Icephobic and Erosion Resistant Coatings Based on Quasicrystals

2023-06-15
2023-01-1455
Quasicrystalline (QC) coatings were evaluated as leading-edge protection materials for rotor craft blades. The QC coatings were deposited using high velocity oxy-fuel thermal spray and predominantly Al-based compositions. Ice adhesion, interfacial toughness with ice, wettability, topography, and durability were assessed. QC-coated sand-blasted carbon steel exhibited better performance in terms of low surface roughness (Sa ~ 0.2 μm), liquid repellency (water contact angles: θadv ~85°, θrec ~23°), and better substrate adhesion compared to stainless steel substrates. To enhance coating performance, QC-coated sand-blasted carbon steel was further exposed to grinding and polishing, followed by measuring surface roughness, wettability, and ice adhesion strength. This reduced the surface roughness of the QC coating by 75%, resulting in lower ice adhesion strengths similar to previously reported values (~400 kPa).
Technical Paper

Early Swedish Hot-Bulb Engines - Efficiency and Performance Compared to Contemporary Gasoline and Diesel Engines

2002-03-04
2002-01-0115
“Hot Bulb engines” was the popular name of the early direct injected 2-stroke oil engine, invented and patented by Carl W. Weiss 1897. This paper covers engines of this design, built under license in Sweden by various manufacturers. The continuous development is demonstrated through examples of different combustion chamber designs. The material is based on official engine performance evaluations on stationary engines and farm tractors from 1899 to 1995 made by the National Machinery Testing Institute in Sweden (SMP). Hot-bulb, diesel and spark ignited engines are compared regarding efficiency, brake mean effective pressure and specific power (power per displaced volume). The evaluated hot-bulb engines had a fairly good efficiency, well matching the contemporary diesel engines. At low mean effective pressures, the efficiency of the hot-bulb engines was even better than that of subsequent diesel engines.
Technical Paper

Effect of Closed Loop Fuel Control System Characteristics on Emissions from a Natural Gas-Fueled Engine

1993-10-01
932747
Some current aftermarket natural gas closed loop carburetion systems use an integral control strategy to maintain a fuel-air equivalence ratio centered in the peak conversion window of a three-way catalytic converter. Fuel control system performance under steady-state engine operating conditions can be characterized by the time-averaged value of the fuel-air equivalence ratio, the rich and lean excursion limits, and a skewness parameter that represents the non-symmetry of the time varying fuel-air equivalence ratio about the control value (ϕaverage). Using a representative aftermarket feedback control system, the effect of these parameters on the exhaust emissions of a natural-gas fueled four-cylinder engine has been investigated. In addition, the effect of EGO sensor characteristics on control system performance has been examined.
Technical Paper

Effect of Engine Operating Variables and Piston and Ring Parameters on Crevice Hydrocarbon Emissions

1994-03-01
940480
A study was performed to determine the effects of engine operating variables and piston and ring parameters on the crevice hydrocarbon emissions from a spark-ignition engine. Natural gas was used as the test fuel in an effort to isolate crevice mechanisms as the only major source of unburned hydrocarbons in the test engine's exhaust. The largest of the in-cylinder crevices, the piston ring pack crevices, were modified, both in size and accessibility, by altering the piston top land height and the number of piston rings and their end gaps. Each piston and ring configuration was subjected to a series of test sweeps of engine operating variables known to affect exhaust hydrocarbon emissions. None of the physical crevice modifications had any significant effect on the level of the exhaust hydrocarbon emissions, although the cycle-to-cycle repeatability of these emissions, measured with a fast hydrocarbon analyzer, was found to vary between the different configurations.
Technical Paper

Effect of Increasing Compression Ratio in a Light-Duty Natural Gas-Fueled Engine on Efficiency and Emissions

1993-10-01
932746
As a result of CAFE (corporate average fuel economy) requirements, the trend in passenger car engine design is to smaller displacement engines of higher specific output which provide reductions in vehicle driving cycle fuel consumption without an accompanying decrease in maximum power output. Design features such as four valves per cylinder and compact combustion chambers give these engines significantly different combustion characteristics than traditional pushrod OHV (overhead valve) engines. In general, their combustion chambers are fast burning, enabling the use of higher compression ratios without knock on unleaded gasoline. Since fuel consumption decreases with increasing compression ratio, and since natural gas has a substantially higher octane rating than the best unleaded gasoline, it would appear to be desirable to operate with even higher compression ratios in a dedicated natural gas engine.
X