Refine Your Search

Topic

Author

Search Results

Technical Paper

1D Simulation-Based Methodology for Automotive Grill Opening Area Optimization

2021-09-15
2021-28-0133
This paper discusses the methodology setup for grill opening area prediction at the early development phase of the product development lifecycle, using a commercially available 1D simulation tool- AMESIM. Representative under hood has been modeled using Grill, Condenser, Radiator, intercooler, fan, and engine components. Vehicle velocity is used as an input to derive the airflow passing through the grill and other under-hood components based on ram air coefficient, pressure drop through different components (Grill, Heat exchanger, Fan & Engine). This airflow is used to predict the top tank temperature of the radiator. Derived airflow is correlated with airflow obtained from CFD simulation. A balance has been achieved between cooling drag & fan power consumption at different grill opening areas for target top tank temperature. Top tank temperature has been predicted at two different extreme engine heat rejection operating points.
Technical Paper

A Real-World Range Testing and Analysis Methodology Development for Battery Electric Vehicles

2024-01-16
2024-26-0124
Range anxiety is one of the major factors to be dealt with for increasing penetration of EVs in current Automotive market. The major reasons for range anxiety for customers are sparse charging infrastructure availability, limited range of Electric vehicles and range uncertainty due to diverse real-world usage conditions. The uncertainty in real world range can be reduced by increasing the correlation between the testing condition during vehicle development and real-world customer usage condition. This paper illustrates a more accurate test methodology development to derive the real-world range in electric vehicles with experimental validation and system level analysis. A test matrix is developed considering several variables influencing vehicle range like different routes, drive modes, Regeneration levels, customer drive behavior, time of drive, locations, ambient conditions etc.
Technical Paper

A Secondary De-Aeration Circuit for an Engine Cooling System with Atmospheric Recovery Bottle to Improve De-Aeration

2014-09-30
2014-01-2342
In any engine cooling system, de-aeration capability of the system plays a very critical role to avoid over heating of an engine. In general, with recovery bottle engine cooling system there is one vent hose from radiator pressure cap to the recovery bottle and coolant in the bottle is exposed to atmospheric pressure. From this vent hose air bubbles will move to recovery bottle from the engine and radiator when pressure in the system exceeds pressure cap setting. With this arrangement, de-aeration from the engine will happen when thermostat opens only and till that time air bubbles will be in the engine only and in this time there will be chance of overheating at some critical conditions because of air pockets in to the engine water jacket and the entrained air in the cooling circuit. Also, secondly 100 % initial filling cannot be achieved.
Technical Paper

A Study on Door Clips and Their Influence on BSR Performance

2019-06-05
2019-01-1468
Squeak and rattle concerns account for approximately 10% of overall vehicle Things Gone Wrong (TGW) and are major quality concern for automotive OEM’s. Objectionable door noises are one of the top 10 IQS concerns under any OEM nameplate. Door trim significantly contributes to overall BSR quality perception. Door trim is mounted on door in white using small plastic clips with variable properties that can significantly influence BSR performance. In this paper, the performance of various door clips is evaluated through objective parameters like interface dynamic stiffness and system damping. The methodology involves a simple dynamic system for the evaluation of the performance of a clip design. Transmissibility is calculated from the dynamic response of a mass supported by clip. Parameters such as interface stiffness and system damping are extracted for each clip design. Variation of inner panel thickness is also considered when comparing clip performance.
Technical Paper

Accurate Steering System Modelling for Vehicle Handling and Steering Performance Prediction Using CAE

2021-09-22
2021-26-0403
The automobile industry strives to develop high-quality vehicles quickly that fulfill the buyer’s needs and stand out within the competition. Full utilization of simulation and Computer-Aided Engineering (CAE) tools can empower quick assessment of different vehicle concepts and setups without building physical models. Vehicle execution assessment is critical in the vehicle development process, requiring exact vehicle steering system models. The effect of steering system stiffness is vital for vehicle handling, stability, and steering performance studies. The overall steering stiffness is usually not modeled accurately. Usually, torsion bar stiffness alone is considered in the modeling. The modeling of overall steering stiffness along with torsion bar stiffness is studied in this paper. Another major contributing factor to steering performance is steering friction. The steering friction is also often not considered properly.
Technical Paper

Acoustic Analysis of a Tractor Muffler

2017-06-05
2017-01-1791
Parametric model of a production hybrid (made up of reactive and dissipative elements) muffler for tractor engine is developed to compute the acoustic Transmission Loss (TL). The objective is to simplify complex muffler acoustic simulations without any loss of accuracy, robustness and usability so that it is accessible to all product development engineers and designers. The parametric model is a 3D Finite Element Method (FEM) based built in COMSOL model builder which is then converted into a user-friendly application (App) using COMSOL App builder. The uniqueness of the App lies in its ability to handle not only wide range of parametric variations but also variations in the physics and boundary conditions. This enables designers to explore various design options in the early design phase without the need to have deep expertise in a specific simulation tool nor in numerical acoustic modeling.
Technical Paper

Alternate Manufacturing Process for Automotive Input Shafts

2017-10-13
2017-01-5013
The input shafts are conventionally developed through Hot forging route. Considering upcoming new technologies the same part was developed through cold forging route which resulting in better Mechanical properties than existing hot forging process. It has added benefit of cost as well as environmental friendly. Generally, the part like Input shaft which having gear teeth, splines etc., will be manufactured through Hot forging process due to degree of deformation, availability of press capacity, diameter variations etc., This process consumes more energy in terms of electricity for heating the bar and also creates pollution to the atmosphere. Automotive input shaft design modified to accommodate cold forging process route to develop the shaft with press capacity of 2500T which gives considerable benefit in terms of mechanical and metallurgical Properties, close dimensional tolerances, less machining time, higher material yield when compared to hot forging and metal cutting operation.
Technical Paper

An Investigation into the Disruption of Circadian Rhythms using Blue Light for Automotive Applications

2015-04-14
2015-01-1706
Melatonin, otherwise popularly known as the “sleep hormone” is known to govern the human circadian rhythms. Current studies indicate that the generation of melatonin is impacted by the ambient light. The natural sleep inducing behavior during night and in darkness, is also due to the same phenomenon. Studies have shown that light of particular wavelengths in the visible spectrum have a higher effect on the amount of melatonin secreted by the human body. Blue light in the wavelengths of around 468 nm is known to inhibit the melatonin secretion, the most. This branch of science known as photobiology is in its nascent stage and is a matter of research pursued by neurologists, endocrinologists and other lighting researchers. Photobiology has several potential applications in the automotive industry, the principal one being driver drowsiness prevention.
Technical Paper

Analytical Design and Development for Automobile Powertrain Mounts Using Low Fidelity Calculators

2016-02-01
2016-28-0185
The excitation to a vehicle is from two sources, road excitation and powertrain excitation. Vehicle Suspension is designed to isolate the road excitation coming to passenger cabin. Powertrain mounts play a vital role in isolating the engine excitation. The current study focuses on developing an analytical approach using Low-Fidelity computer programs to design the Powertrain Mount layout and stiffness during the initial stage of product development. Three programs have been developed as a part of this study that satisfy the packaging needs, NVH requirements and static load bearing requirements. The applications are capable of providing the Kinetic Energy Distribution and Static Analysis (Powertrain Enveloping and Mount Durability) for 3-point and 4-point mounting systems and the ideal mount positions and stiffness for 3-point mounting systems.
Technical Paper

CAE Driven Light Weighting of Automotive Hood Using Multiple Loadcase Optimization

2022-03-29
2022-01-0788
In the automotive industry the requirement for low emissions has led to the demand for lightweight vehicle structures. Light weighting can be achieved through different iterative approaches but is usually time consuming. Current paper highlights deployment of the multi-loadcase optimization approach for light weighting. This work involves developing a process for multiple loadcase optimization for automotive hood. The main goal is to minimize the weight of a hood assembly by meeting strength and stiffness targets. The design variables considered in this study are thickness of the panels. Design constraints were set for stress and stiffness based on DVP (Design Verification Plan) requirement. Optimization workflow is setup in mode-frontier with design objective of minimizing weight of hood.
Technical Paper

Case Study: An Accelerated Methodology for Simulating Thermal Stress in Automotive Headlamps

2017-01-10
2017-26-0322
In any industry, early detection and mitigation of a failure in component is vital for feasible design changes or development iterations or saving money. So it becomes pivotal to capture the failure mode in an accelerated way. This theory poses many challenges in devising the methodology to validate the failure mode. In real world, vehicle head lamp is exposed to all possible kinds of harsh environments such as variable daily ambient, rain, dust and engine compartment temperature …etc. This brings rapid thermal stress onto headlamp resulting into warpage cracks. At vehicle level on particular model, this failure is typically observed after 20,000-25,000 kms in a span of 3-4 months of running. Any corrective action to revalidate the design change or improvement will need similar timelines in regular way to test, which is quite high in product development cycle.
Technical Paper

Comparative Analysis of Strain based Fatigue Life Obtained from Uni-Axial and Multi-Axial Loading of an Automotive Twist Beam

2017-01-10
2017-26-0312
Twist beam is a type of suspension system that is based on an H or C shaped member typically used as a rear suspension system in small and medium sized cars. The front of the H member is connected to the body through rubber bushings and the rear portion carries the stub axle assembly. Suspension systems are usually subjected to multi-axial loads in service viz. vertical, longitudinal and lateral in the descending order of magnitude. Lab tests primarily include the roll durability of the twist beam wherein both the trailing arms are in out of phase and a lateral load test. Other tests involve testing the twist beam at the vehicle level either in multi-channel road simulators or driving the vehicle on the test tracks. This is highly time consuming and requires a full vehicle and longer product development time. Limited information is available in the fatigue life comparison of multi-axial loading vs pure roll or lateral load tests.
Journal Article

Comparing Various Multi-Disciplinary Optimization Approaches for Performance Enhancement and Weight Reduction of a Vehicle Chassis Frame

2016-04-05
2016-01-0305
Designing a vehicle chassis involves meeting numerous performance requirements related to various domains such as Durability, Crashworthiness and Noise-Vibration-Harshness (NVH) as well as reducing the overall weight of chassis. In conventional Computer Aided Engineering (CAE) process, experts from each domain work independently to improve the design based on their own domain knowledge which may result in sub-optimal or even non-acceptable designs for other domains. In addition, this may lead to increase in weight of chassis and also result in stretching the overall product development time and cost. Use of Multi-Disciplinary Optimization (MDO) approach to tackle these kind of problems is well documented in industry. However, how to effectively formulate an MDO study and how different MDO formulations affect results has not been touched upon in depth.
Technical Paper

Concept Phase Powertrain Development for NVH Using the Optimization Technique

2015-06-15
2015-01-2294
One of the primary excitation sources in a passenger car comes from the powertrain [1]. Refinement of powertrain induced noise is the most critical tasks during a vehicle refinement. Due to ever increasing demand for reduced design and development cycle, most critical decisions have to be made at the concept stage. Powertrain radiated noise is one of the most important performance factor that must be evaluated during the concept stage. Solution time for calculating the radiated noise using the existing acoustic solvers is very high and requires very expensive resources like software and hardware. Arriving the optimal design with conventional method is very tedious job. A new method has been adopted for identifying the critical areas and coming up with the optimal design modifications within a short span of time. Powertrain radiated noise has been calculated with the help of acoustic solver.
Technical Paper

Cost Efficient Bharat (Trem) Stage IV Solutionsfor TractorEngines

2015-01-14
2015-26-0092
India's high Air Pollution level is the focus of discussions as we grow. Plans to combat this menace and implement the latest Technologies are gathering pace. The increasingly stringent emission legislations provide a continuous challenge for the non-road market. Tractor manufacturers are evaluating the need for cost-effective technology to meet upcoming stringent emissions targets. Simply following global approach may not work for Indian market considering the customer usage pattern & perceptions. With an anticipation of upcoming emission norms being based on US-EPA TIER-4 final up to 75 Hp, major technology up gradation is expected for farm equipment sold in India. The enormous diversification of engines within the different power classes as well as the operation specific requirements regarding various duty cycles, robustness and durability, requires specific solutions to meet these legal limits.
Technical Paper

Customer Usage Profile based Luggage Compartment Development at Concept Phase

2021-10-01
2021-28-0153
The SAE J1100 based standard cargo volume index methods and predefined luggage objects are very specific to United States population. The European luggage volume calculation and standard luggage calculations are primarily based on DIN and ISO standards. Luggage volume declaration by manufacturers are based on any of these methods. The calculations are complicated and there is a possibility of declaring different values for similar luggage compartments. The major purchase decision of vehicle is based on its luggage capacity and current methods are very limited to make an intelligent decision by a customer. Market specific customer usage patterns for luggage requirements and protecting them in vehicle architecture upfront in concept stage is important to retain the market position and buying preference of customers. The usage patterns is collected from customer clinics and marketing inputs.
Technical Paper

Derivation of Extreme Static Durability Load Cases for FEA Based Vehicle Strength Evaluation

2011-09-13
2011-01-2174
Validation of vehicle structure by use of finite element analysis is at the core of reduction of product development time. In the early phase of validation it is required to evaluate the strength of the vehicle structure to account for the loading during physical validation and service loading. In service the vehicle is subjected to variable loads. These act upon the components that originate from road roughness, maneuvers and power train loads. All systems in the vehicle represent more or less complicated elastic structures subjected to time varying loads. A time domain dynamic assessment of the vehicle structure is time consuming and expensive. Also in the early phase of design wherein several design iterations need to be carried out for design validation, it is practically impossible to conduct a dynamic analysis and fatigue life assessment. Extreme static load cases are traditionally being used for this process.
Technical Paper

Design Improvement and Failure Simulation of Thermostat Vent Using Fatigue Test Method

2021-09-22
2021-26-0456
Currently the Automotive industry demands highly competitive product to survive in the global tough competition. Even if there is a slight reduction in product cost and time has a high significant impact on business. Engineers are under tremendous pressure to develop competitive and give better product concern resolution at the earliest. To arrest the failure of this thermostat vent, an innovative approach was used to relocate de-aeration restrictor on the hose to the thermostat root. Thus, resolving the product concern by increasing the strength of the vent at root and providing good business impact on cost savings. Physical testing has provided an effective way to smoothen product development for concern resolution. This Paper highlights approach on an attempt to field failure simulation with existing and modified design with lab test results.
Technical Paper

Development of Methodology to Determine Toe Geometry of any Vehicle at Its Early Design Stage for Optimum Tyre Life

2019-10-11
2019-28-0105
Toe setting is one of the major wheel alignment parameters which directly effects handling of a vehicle. Correct toe setting ensures desired dynamic behavior of an automobile like straight line stability, cornering behavior, handling and tire durability. Incorrect setting of toe during design stage significantly deteriorates tire durability and leads to uneven tire wear. In the present scenario of automotive industry, toe setting is majorly an iterative or a trial and error process which is both time consuming and involves higher development cost as there may be instances where 2 to 3 sets of iterations are needed before specification is finalized for production. Therefore, determining optimum toe setting at an early stage of a product development will not only save significant development time but it will also benefit in reducing product validation time and cost.
Technical Paper

Durability of Customer Perceived Quality of Molded-in-Color Car Bumper

2019-01-09
2019-26-0319
Customer perceived quality (CPQ) of the car is the impression of excellence that a customer experiences the brand through sight, sound, touch, and scent. Molded-in-color (MIC) bumper’s aesthetic appeal contributes significantly to the CPQ of the car. Typical parameters used to define CPQ are color, gloss, grain definition, grain depth, geometry and draft. In this work the durability of the color and gloss post ageing is understood by using analytical and characterization tools. Using the results of ageing characterization, an attempt has been made to understand the retained newness of MIC bumper.
X