Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

A Holistic Approach of Developing New High Strength Cast Iron for Weight Optimization

2021-09-22
2021-26-0244
Foundry industries are very much familiar and rich experience of producing ferrous castings mainly Flake Graphite (FG) and Spheroidal Graphite (SG) cast iron. Grey cast iron material is mainly used for dampening applications and spheroidal graphite cast iron is used in structural applications wherein high strength and moderate ductility is necessary to meet the functional requirements. However, both types of cast iron grades are very much suitable in terms of manufacturing in an economical way. Those grades are commercially available and being consumed in various industries like automotive, agriculture etc, High strength SG Iron grades also being manufactured by modifying the alloying elements with copper, chromium, manganese andcobalt. but it has its own limitation of reduction in elongation when moving from low to high strength SG iron material. To overcome this limitation a new cast iron developed by modifying the chemical composition.
Technical Paper

A Study on Automotive Sheetmetal Surface Pretreatment: Liquid Activation and Low Temperature Phosphating

2023-05-25
2023-28-1324
Phosphating is the most preferred surface treatment process used for auto body sheet panel before painting due to its low-cost, easy production process, good corrosion resistance, and excellent adhesion with subsequent paint layer. There are different phosphating processes used for ferrous metal like zinc phosphating, iron phosphating, di-cationic & tri-cationic phosphating, etc. Among these phosphate coatings, the best corrosion resistance and surface adhesion are achieved by tri-cationic phosphate coatings (zinc-nickel-manganese phosphate). Many new technologies of phosphating are evolving. Key drivers for this evolution are increasing demand for higher corrosion resistance, multi-metal car body processing in same phosphating bath and sustainability initiatives to reduce the carbon footprints. We have evaluated two of these recent technologies.
Technical Paper

A Study on the Effect of Steering Input Frequency on Transient Lateral Dynamics of Four-Wheeled Passenger Vehicles

2019-01-09
2019-26-0070
Vehicle lateral dynamic response parameters such as yaw velocity, lateral acceleration, roll angle, etc. depend on the nature of steering input. Response parameters vary with the amplitude and frequency of steering input. This paper deals with developing insights into the effect of steering input frequency on transient handling dynamics. For the purpose two SUV segment vehicles with similar curb weight are considered. Vehicles are given pulse inputs of the amplitudes corresponding to 4 m/s2 steady state lateral acceleration and target speeds of 80 kmph and 100 kmph, as recommended in ISO 7401:2011. Steering inputs are executed using a Steering Robot (ABD SR30). Lateral transient dynamic response gains as well as natural frequencies of yaw are studied for 0-2 Hz input frequencies. Several insights are developed, adding to the understanding of transient lateral dynamics and its relationship with steering input.
Technical Paper

A Test Methodology for Vehicle Wind Noise Reduction and Acoustic Quality Improvement

2019-01-09
2019-26-0216
Aeroacoustics of vehicles is becoming an important design criterion as it directly affects passenger’s comfort. The wind noise at highway speeds (>80 KMPH) is a critical quality concern under normal and crosswind conditions and dominant factor in assessing acoustic comfort of the vehicle. Wind noise is caused by the vortex air flow around a vehicle body and air leakage through the sealing gaps of attached parts. This majorly contributes to high frequency noise (>250 Hz). Accurate identification and control of noise sources and leakage paths result in improved acoustic comfort of the vehicle. In this paper, aero-acoustic quality characteristics of validation prototype vehicle are studied. The major wind noise sources and leakage paths in the vehicle are identified through in-house blower set up in the semi anechoic room. The overall wind noise level and articulation index of vehicle at various speeds are determined through on- road measurements.
Technical Paper

Customer Usage Profile based Luggage Compartment Development at Concept Phase

2021-10-01
2021-28-0153
The SAE J1100 based standard cargo volume index methods and predefined luggage objects are very specific to United States population. The European luggage volume calculation and standard luggage calculations are primarily based on DIN and ISO standards. Luggage volume declaration by manufacturers are based on any of these methods. The calculations are complicated and there is a possibility of declaring different values for similar luggage compartments. The major purchase decision of vehicle is based on its luggage capacity and current methods are very limited to make an intelligent decision by a customer. Market specific customer usage patterns for luggage requirements and protecting them in vehicle architecture upfront in concept stage is important to retain the market position and buying preference of customers. The usage patterns is collected from customer clinics and marketing inputs.
Technical Paper

Design For Affordability -Composite Running Board

2015-01-14
2015-26-0070
Light weighting is the Current trends in automotive to achieve better fuel economy which helps for meeting fuel economy standards & to offset the higher fuel prices. Thus there is a need to develop composite running board which is light weight & structurally sound enough to meet the performance. The present paper provides a composite running board assembly for an automobile. The running board assembly includes a board, an insert body and a plurality of brackets. Upon stepping of a passenger on the board, the board transfers load on the insert body which subsequently transfers the load to the plurality of brackets thus facilitating even distribution of the load on the automobile body. This paper also put lights on the use of improved TRIZ application - an approach to inventive problem solving for designing highly affordable & light weight running board. The cost & weight reduction achieved with innovative design is about 40 % & 35 % comparing to existing cost & weight.
Technical Paper

Eco-Friendly Recycled PET (Polyethylene Terephthalate) Material for Automotive Canopy Strip Application

2015-04-14
2015-01-1304
This paper describes the suitability of recycled polyethylene terephthalate (RPET) material for canopy strip in a commercial vehicle. The material described in this paper is a PET compound recycled from used PET bottles and reinforced with glass fibers so as to meet the product's functional requirements. The application described in this paper is a Canopy strip which is a structural exterior plastic part. Canopy strip acts as a structural frame to hold the Vinyl canopy in both sides of the vehicle. Functionally, the part demands a material with adequate mechanical and thermal properties. Generally, PET bottles are thrown after use thereby creating land pollution. PET being inert takes an extremely long time to degrade thereby occupying huge amount of space in landfills and directly affecting rain water percolation. This work focused on recycling the PET bottles and compounding them suitably so as convert them into useful automotive parts.
Technical Paper

Evaluation of Cost-Effective Method of Improving the Cabin Air Quality Using HVAC case Coating

2022-11-09
2022-28-0452
Among many environments, the motor vehicle cabin micro-environment has been of public concern. Infact Air pollution more harmful to children in cars than outside. Although commuters typically spend only 1-2hrs per day of their time in vehicles, the emissions from various interior components of motor vehicles as well as emissions from exhaust fumes carried by ventilation supply air are significant sources of harmful air pollutants that could lead to unhealthy human exposure due to their high concentrations inside vehicles’ cabins. This N9 silver ion technology helps significant reduction of microbial & viruses inside the vehicle cabin air. On contact silver will neutralize harmful bacteria on plastic surfaces giving them long lasting freshness and long-term protection. Silver is a natural antimicrobial. That means that microbes-germs can’t survive in the presence of silver ions. Silver ions released from the surface of silver molecules.
Technical Paper

Impact of Chemical Blowing Agent on Polypropylene Properties

2021-10-01
2021-28-0203
Weight reduction in automotive applications have led to the processing of thermoplastic polymers by foam injection molding. The density of the foamed polymer can be reduced up to 20%. Whilst, work has been reported on the weight reduction of the foamed polymer by using different types of blowing agent technologies, there has been limited studies in the areas of the sound transmission loss and sound attenuation properties of these materials. The present study is intended to understand the effect of chemical blowing agent (CBA) on the properties of polypropylene. The molded specimens were characterized using density, Differential scanning colorimetry (DSC), Thermogravimetric analysis (TGA), Fourier transform infra-red spectroscopy (FT-IR) and sound transmission loss (STL) measurements. Specimens were also tested for tensile properties, flexural properties, Izod impact strength and Heat deflection temperature (HDT) as per standard test protocol.
Technical Paper

Novel, Compact and Light Weight Plenum Assembly for Automobiles

2017-07-10
2017-28-1924
Plenum is the part located between the front windshield and the bonnet of an automobile . It is primarily used as an air inlet to the HVAC during fresh air mode operation. It’s secondary functions include water drainage, aesthetic cover to hide the gap between windshield to bonnet, concealing wiper motors and mechanisms etc. The plenum consists mainly two sub parts viz. upper plenum and lower plenum. Conventional plenum design which is found in majority of global OEMs employ a plastic upper plenum and a metal lower plenum which spans across the entire width of engine compartment. This conventional lower plenum is bulky, consumes more packaging space and has more weight. In this paper, we propose a novel design for the plenum lower to overcome above mentioned limitations of the conventional design. This novel design employs a dry and wet box concept for its working and is made up of complete plastic material.
Technical Paper

Optimizing OSRVM Package for Maximizing In-vehicle Visibility

2015-09-29
2015-01-2837
Overall in-vehicle visibility is considered as a key safety parameter essentially mandated due to the increasing traffic scenario as seen in developing countries. Driver side bottom corner visibility is one such parameter primarily defined by A-pillar bottom and outside rear-view mirror (OSRVM). While defining the OSRVM package requirements such as size, position and regulatory aspects, it is also vital to consider other influencing parameters such as position of pillars, waist-line height, and Instrument panel which affect the in-vehicle visibility. This study explains the various package considerations, methods to optimize OSRVM position, shape and housing design in order to maximize the in-vehicle visibility considering the road and traffic conditions. A detailed study on in-vehicle visibility impacted by OSRVM packaging explained and had been verified for the results.
Technical Paper

Overcoming Manufacturing Challenges in Mass Production of Vanadium Micro-Alloyed Steel Connecting Rods

2022-03-29
2022-01-0234
With recent advancements to create light weight engines and therefore, to design stronger and lighter connecting rods, automobile manufacturers have looked upon vanadium micro-alloyed steels as the material of choice. These materials have been developed keeping in mind the strength and manufacturing requirements of a connecting rod. Since, 36MnVS4 has been the most popular of this category, the same has been discussed in this paper. The transition of manufacturers from the traditional C70S6 grade to the new 36MnVS4 must be dealt with in-depth study and modification of processes to adapt to new properties of the latter. C70S6 is a high carbon grade with superior fracture split whereas 36MnVS4 is a medium carbon grade with superior strength and ductility owing to the presence of vanadium.
Technical Paper

Scientific Approach for Pickup Cargo Weight Reduction

2024-01-16
2024-26-0192
In this study, the benchmarked-based statistical Light Weight Index (LWI) technique is developed for predicting the world in class optimum weight. For these four statistical Lightweight Index numbers are derived based on the geometrical dimensions. This strategy is used for the target setting. To achieve the target, the Value Analysis approach for Cargo assembly is to redesign and make Refresh Cargo assembly. The organization also benefited directly by reducing the inventory cost and transportation costs because of the deletion of parts and minimizing the assemblies. Vehicle power-to-weight ratio and fuel economy also improved based on cutting weight. The complete case study with details has been mentioned in the work. The weight benefit led to an increase in the profit margin and caters to the difficulty because of the daily increase in the price of raw materials.
Technical Paper

Sealing Prediction and Improvement at Cylinder Head & Block Interface under Thermo-Mechanical Loading involving Multi- Layer Steel Gasket

2015-04-14
2015-01-1743
An inadequate sealing of the combustion chamber gasket interface may have severe consequences on both the performance & emission of an engine. In this investigation, both the distribution of the contact pressure on the gasket and the stresses of the cylinder head at different loading conditions are explored and improved by modifying the design. A single cylinder gasoline engine cylinder head assembly has been analyzed by means of an uncoupled FEM simulation to find the sealing pressure of the multi-layer steel (MLS) gasket, strength & deformation of the components involved. The thermal loads are computed separately from CFD simulations of cylinder head assembly. The cylinder head assembly consisting of head, blocks, liner, cam shaft holder, bolts, gaskets, valve guides & valve seats, is one of the most complicated sub-assembly of an IC engine.
Journal Article

Simulation based Approach to Study the Effect of Hypoid Gear Manufacturing Variability on In-Cabin Noise

2021-09-22
2021-26-0270
With increase in demand for quieter product and reduction in masking noise, axle whine management plays a crucial role in the early product development process. Whine is tonal in nature and humans are more sensitive to tonal memory, hence this makes user to experience a very unpleasant ride which in turn results in bad product credibility. Dynamic mesh force excitation is the cause of the axle whine noise. Critical factors in consideration are gear micro geometry variability, misalignments, temperature of operation and resulting bearing pre-load, operating loads, and structural resonances that carry the excitation to the occupant’s ear. The variability associated with gear micro-geometry plays crucial role during optimization in the quest for robust gear design.
Technical Paper

Study of Various Techniques for the Reduction of Mobile Air Conditioning (MAC) Compressors Noise Inside the Passenger Cabin

2021-09-15
2021-28-0126
Among the Original Equipment Manufacturers (OEM’s), comfort, fuel efficiency and safety are the key factors that drive the vehicle business. The main contributors of vehicle comfort are vibration, noise, thermal comfort (temperature), air quality, light, and ergonomics. In this context, compressor noise plays an important role in the comfort of the passengers. Noise can have adverse effect on occupants in the vehicle starting from mild annoyance and may lead to loss of concentration. It is a big challenge for the automotive engineer to find the source of noise and path through which it is transmitted, and eventually to reduce or dampen it during the product development. The objective of this paper is to understand the functioning of various compressor’s noise characteristics in static (i.e. initial engagement of compressor) and dynamic condition (i.e. during compressor running).
Technical Paper

Systematic Approach to Design Hand Controlled Parking Brake System for Passenger Car

2015-01-14
2015-26-0078
This paper is an attempt to compile a systematic approach which can be easily incorporated in the product development system used in the design and development of parking brake systems for passenger cars having rear drum brakes, which in turn can effectively reduce the lead time and give improved performance. The vehicle GVW, percentage gradient and maximum effort limits (as per IS 11852 - Part 3), tire and drum brake specifications were taken as front loading. This data is used for target setting of functional and engineering parameters, such as lever pull effort, lever ratio and angular travel of lever. Design calculations were performed to obtain theoretical values of critical parameters like lever effort and travel. The comparison between target and theoretical values give the initial confidence to the system engineer. Further, the outcome was taken to conceptualize the hard points of lever on vehicle for ergonomics.
Technical Paper

Vinyl Ester Based SMC Material for Automotive Oil Sump Application

2015-04-14
2015-01-0718
This paper describes vinyl ester based SMC (Sheet molding composite) material for oil sump part in automotive application. This sheet moulding composite is a ready to mould glass-fibre reinforced vinyl ester material primarily used in compression moulding process. This vinyl ester resin is compounded with glass fibre to meet the product functional requirements. Oil sump is a structural component under bonnet that forms the bottommost part of the crankcase and also contain the engine oil before and after it has been circulated through the engine. Generally, metals are preferred material for this application. In this paper, fibre filled vinyl ester based thermoset resin (SMC) material has been explored for oil sump application. They possess excellent properties in terms of tensile strength, modulus, impact strength, dimensional stability, high/low temperature resistance and oil resistance.
X