Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of Methane Oxidation Catalyst and Its Mechanism

2005-04-11
2005-01-1098
Palladium is well known to catalyze methane (CH4) oxidation more efficiently than platinum (Pt) and/or rhodium (Rh) catalysts. The mechanism for methane oxidation on palladium is hypothesized to proceed via a radical intermediate. Direct identification of a radical species was not detected by Electron Spin Resonance Spectroscopy (ESR). However, indirect evidence for a radical intermediate was found by identification of ethane (C2H6), the methyl radical(CH3 ˙ ) coupling product, by Mass spectroscopy analysis under CH4/O2 conditions.
Technical Paper

Oxygen Partial Pressure over Precious Metals and Its Effect on HC Oxidation Performance

2007-04-16
2007-01-1060
Palladium catalysts are known to show higher methane oxidation performance than platinum and/or rhodium catalysts. In this paper, the higher oxidative dehydrogenation activity on palladium is proposed as a reason for the superior methane oxidation. When other oxidation reactions are considered, higher affinity of palladium to oxygen has also been suggested[1]. In this study, oxygen chemical potential on platinum and palladium catalyst surfaces under oxidation conditions was measured using a specially designed electrochemical sensor. The oxygen chemical potential was calculated from the sensor potential by the Nernst equation. As a result, oxygen potential on palladium during the methane oxidation reaction was found to be much higher than that of platinum, correlating with affinity to oxygen and higher methane oxidation performance. The rate of oxygen adsorption and desorption on platinum and palladium was evaluated in an engine experiment using a dual lambda-sensor procedure.
X