Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Pilot Scale System for Low Temperature Solid Waste Oxidation and Recovery of Water

2009-07-12
2009-01-2365
In February 2004 NASA released “The Vision for Space Exploration.” The goals outlined in this document include extending the human presence in the solar system, culminating in the exploration of Mars. A key requirement for this effort is to identify a safe and effective method to process waste. Methods currently under consideration include incineration, microbial oxidation, pyrolysis, drying, and compaction. Although each has advantages, no single method has yet been developed that is safe, recovers valuable resources including oxygen and water, and has low energy and space requirements. Thus, the objective of this work was to develop a low temperature oxidation process to convert waste cleanly and rapidly to carbon dioxide and water. TDA and NASA Ames Research Center have developed a pilot scale low temperature ozone oxidation system to convert organic waste to CO2 and H2O.
Technical Paper

A Testbed for the Mars Returned Sample Handling Facility

2001-07-09
2001-01-2412
Samples of Mars surface material will return to Earth in 2014. Prior to curation and distribution to the scientific community the returned samples will be isolated in a special facility until their biological safety has been assessed following protocols established by NASA’s Planetary Protection Office. The primary requirements for the pre-release handling of the Martian samples include protecting the samples from the Earth and protecting the Earth from the sample. A testbed will be established to support the design of such a facility and to test the planetary protection protocols. One design option that is being compared to the conventional Biological Safety Level 4 facility is a double walled differential pressure chamber with airlocks and automated equipment for analyzing samples and transferring them from one instrument to another.
Technical Paper

Accommodating Rodents During Extended Microgravity Missions

1997-07-01
972306
This study examines the current state of the art in rodent habitats as well as the next generation of rodent habitats currently under development at NASAs Ames Research Center. Space Shuttle missions are currently limited in duration to just over two weeks. In contrast to this, future life science missions aboard the Space Station may last months or even years. This will make resource conservation and utilization critical issues in the development of rodent habitats for extended microgravity missions. Emphasis is placed on defining rodent requirements for extended space flights of up to 90 days, and on improving habitability and extending the useful performance life of rodent habitats.
Technical Paper

Air and Water Recycling System Development for a Long Duration Lunar Base

2006-07-17
2006-01-2191
Stored air and water will be sufficient for Crew Exploration Vehicle visits to the International Space Station and for brief missions to the moon, but an air and water recycling system will be needed to reduce cost for a long duration lunar base and for exploration of Mars. The air and water recycling system developed for the International Space Station is substantially adequate but it has not yet been used in operations and it was not designed for the much higher launch costs and reliability requirements of moon and Mars missions. Significant time and development effort, including long duration testing, is needed to provide a flawless air and water recycling system for a long duration lunar base. It would be beneficial to demonstrate air and water recycling as early as the initial lunar surface missions.
Technical Paper

Air and Water System (AWS) Design and Technology Selection for the Vision for Space Exploration

2005-07-11
2005-01-2810
This paper considers system design and technology selection for the crew air and water recycling systems to be used in long duration human space exploration. The ultimate objective is to identify the air and water technologies likely to be used for the vision for space exploration and to suggest alternate technologies that should be developed. The approach is to conduct a preliminary systems engineering analysis, beginning with the Air and Water System (AWS) requirements and the system mass balance, and then to define the functional architecture, review the current International Space Station (ISS) technologies, and suggest alternate technologies.
Technical Paper

Airport Remote Tower Sensor Systems

2001-09-11
2001-01-2651
Remote Tower Sensor Systems are proof-of-concept prototypes being developed by NASA/Ames Research Center (NASA/ARC) with collaboration with the FAA and NOAA. RTSS began with the deployment of an Airport Approach Zone Camera System that includes real-time weather observations at San Francisco International Airport. The goal of this research is to develop, deploy, and demonstrate remotely operated cameras and sensors at several major airport hubs and un-towered airports. RTSS can provide real-time weather observations of airport approach zone. RTSS will integrate and test airport sensor packages that will allow remote access to real-time airport conditions and aircraft status.
Technical Paper

An Evaluation of Potential Mars Transit Vehicle Water Treatment Systems

1998-07-13
981538
This paper compares four potential water treatment systems in the context of their applicability to a Mars transit vehicle mission. The systems selected for evaluation are the International Space Station system, a JSC bioreactor-based system, the vapor phase catalytic ammonia removal system, and the direct osmotic concentration system. All systems are evaluated on the basis of their applicability for use in the context of the Mars Reference Mission. Each system is evaluated on the basis of mass equivalency. The results of this analysis indicate that there is effectively no difference between the International Space Station system and the JSC bioreactor configurations. However, the vapor phase catalytic ammonia removal and the direct osmotic concentration systems offer a significantly lower mass equivalency (approximately 1/7 the ISS or bioreactor systems).
Technical Paper

An Evaluation of a Prototype Dry Pyrolysis System for Destruction of Solid Wastes

2004-07-19
2004-01-2379
Pyrolysis is a technology that can be used on future space missions to convert wastes to an inert char, water, and gases. The gases can be easily vented overboard on near term missions. For far term missions the gases could be directed to a combustor or recycled. The conversion to char and gases as well as the absence of a need for resupply materials are advantages of pyrolysis. A major disadvantage of pyrolysis is that it can produce tars that are difficult to handle and can cause plugging of the processing hardware. By controlling the heating rate of primary pyrolysis, the secondary (cracking) bed temperature, and residence time, it is possible that tar formation can be minimized for most biomass materials. This paper describes an experimental evaluation of two versions of pyrolysis reactors that were delivered to the NASA Ames Research Center (ARC) as the end products of a Phase II and a Phase III Small Business Innovation Research (SBIR) project.
Technical Paper

An On-line Technology Information System (OTIS) for Advanced Life Support

2003-07-07
2003-01-2636
An On-line Technology Information System (OTIS) is currently being developed for the Advanced Life Support (ALS) Program. This paper describes the preliminary development of OTIS, which is a system designed to provide centralized collection and organization of technology information. The lack of thorough, reliable and easily understood technology information is a major obstacle in effective assessment of technology development progress, trade studies, metric calculations, and technology selection for integrated testing. OTIS will provide a formalized, well-organized protocol to communicate thorough, accurate, current and relevant technology information between the hands-on technology developer and the ALS Community. The need for this type of information transfer system within the Solid Waste Management (SWM) element was recently identified and addressed.
Technical Paper

Artificial Gravity for Mars Missions: The Different Design and Development Options

2000-07-10
2000-01-2246
One of the major impediments to human Mars missions is the development of appropriate countermeasures for long term physiological response to the micro-gravity environment. A plethora of countermeasure approaches have been advanced from strictly pharmacological measures to large diameter rotating spacecraft that would simulate a 1-g environment (the latter being the most conservative from a human health perspective). The different approaches have significantly different implications not only on the overall system design of a Mars Mission Vehicle (MMV) but on the necessary earth-orbiting platform that would be required to qualify the particular countermeasure system. It is found that these different design options can be conveniently categorized in terms of the order of magnitude of the rotation diameter required (100's, 10's, 1's, 0 meters). From this, the different mass penalties associated with each category can be generally compared.
Technical Paper

Assessment of the Vapor Phase Catalytic Ammonia Removal (VPCAR) Technology at the MSFC ECLS Test Facility

2007-07-09
2007-01-3036
The Vapor Phase Catalytic Ammonia Removal (VPCAR) technology has been previously discussed as a viable option for the Exploration Water Recovery System. This technology integrates a phase change process with catalytic oxidation in the vapor phase to produce potable water from exploration mission wastewaters. A developmental prototype VPCAR was designed, built and tested under funding provided by a National Research Announcement (NRA) project. The core technology, a Wiped Film Rotating Device (WFRD) was provided by Water Reuse Technologies under the NRA, whereas Hamilton Sundstrand Space Systems International performed the hardware integration and acceptance test of the system. Personnel at the Ames Research Center performed initial systems test of the VPCAR using ersatz solutions. To assess the viability of this hardware for Exploration Life Support (ELS) applications, the hardware has been modified and tested at the MSFC ECLS Test Facility.
Technical Paper

Atmosphere Composition Control of Spaceflight Plant Growth Growth Chambers

2000-07-10
2000-01-2232
Spaceflight plant growth chambers require an atmosphere control system to maintain adequate levels of carbon dioxide and oxygen, as well as to limit trace gas components, for optimum or reproducible scientific performance. Recent atmosphere control anomalies of a spaceflight plant chamber, resulting in unstable CO2 control, have been analyzed. An activated carbon filter, designed to absorb trace gas contaminants, has proven detrimental to the atmosphere control system due to its large buffer capacity for CO2. The latest plant chamber redesign addresses the control anomalies and introduces a new approach to atmosphere control (low leakage rate chamber, regenerative control of CO2, O2, and ethylene).
Technical Paper

Aviation Data Integration System

2003-09-08
2003-01-3009
A number of airlines have FOQA programs that analyze archived flight data. Although this analysis process is extremely useful for assessing airline concerns in the areas of aviation safety, operations, training, and maintenance, looking at flight data in isolation does not always provide the context necessary to support a comprehensive analysis. To improve the analysis process, the Aviation Data Integration Project (ADIP) has been developing techniques for integrating flight data with auxiliary sources of relevant aviation data. ADIP has developed an aviation data integration system (ADIS) comprised of a repository and associated integration middleware that provides rapid and secure access to various data sources, including weather data, airport operating condition (ATIS) reports, radar data, runway visual range data, and navigational charts.
Technical Paper

Breakeven Mission Durations for Physicochemical Recycling to Replace Direct Supply Life Support

2007-07-09
2007-01-3221
The least expensive life support for brief human missions is direct supply of all water and oxygen from Earth without any recycling. The currently most advanced human life support system was designed for the International Space Station (ISS) and will use physicochemical systems to recycle water and oxygen. This paper compares physicochemical to direct supply air and water life support systems using Equivalent Mass (EM). EM breakeven dates and EM ratios show that physicochemical systems are more cost effective for longer mission durations.
Technical Paper

Carbon Production in Space from Pyrolysis of Solid Waste

2006-07-17
2006-01-2183
Pyrolysis processing of solid waste in space will inevitably lead to carbon formation as a primary pyrolysis product. The amount of carbon depends on the composition of the starting materials and the pyrolysis conditions (temperature, heating rate, residence time, pressure). Many paper and plastic materials produce almost no carbon residue upon pyrolysis, while most plant biomass materials or human wastes will yield up to 20-40 weight percent on a dry, as-received basis. In cases where carbon production is significant, it can be stored for later use to produce CO2 for plant growth. Alternatively it can be partly gasified by an oxidizing gas (e.g., CO2, H2O, O2) in order to produce activated carbon. Activated carbons have a unique capability of strongly absorbing a great variety of species, ranging from SO2 and NOx, trace organics, mercury, and other heavy metals.
Technical Paper

Characterization of Condensate from the Research Animal Holding Facility (RAHF)

1994-06-01
941506
Life Sciences research on Space Station will utilize rats to study the effects of the microgravity environment on mammalian physiology and to develop countermeasures to those effects for the health and safety of the crew. The animals will produce metabolic water which must be reclaimed to minimize logistics support. The condensate from the Research Animal Holding Facility (RAHF) flown on Spacelab Life Sciences-2 (SLS-2) in October 1993 was used as an analog to determine the type and quantity of constituents which the Space Station (SS) water reclamation system will have to process. The most significant organics present in the condensate were 2-propanol, glycerol, ethylene glycol, 1,2-propanediol, acetic acid, acetone, total proteins, urea and caprolactam while the most significant inorganic was ammonia. Microbial isolates included Xanthomonas, Sphingobacterium, Pseudomonas, Penicillium, Aspergillus and Chrysosporium.
Technical Paper

Cold Weather Wind Turbines - A Joint NASA/NSF/DOE Effort in Technology Transfer and Commercialization

1997-07-01
972510
Renewable energy sources and their integration with other power sources to support remote communities is of interest for Mars applications as well as Earth communities. The NSF, NASA, and DOE have been jointly supporting development of a 100 kW cold weather wind turbine through grants and SBIR's independently managed by each agency but coordinated by NASA. The NSF grant is specific to address issues associated with the South Pole Application and a 3 kW direct drive unit is currently being tested there in support of the development of the 100 kW unit. An NREL contract is focused on development of the 100 kW direct drive generator. The NASA SBIR is focused on development of the 100 kW direct drive wind turbine.
Technical Paper

Compaction and Drying in a Low-Volume, Deployable Commode

2007-07-09
2007-01-3264
We present a device for collecting and storing feces in microgravity that is user-friendly yet suitable for spacecraft in which cabin volume and mass are constrained. On Apollo missions, the commode function was served using disposable plastic bags, which proved time-consuming and caused odor problems. On Skylab, the space shuttle, and the International Space Station, toilets have used airflow beneath a seat to control odors and collect feces. We propose to incorporate airflow into a system of self-compacting, self-drying collection and stowage bags, providing the benefits of previous commodes while minimizing mass and volume. Each collection bag consists of an inner layer of hydrophobic membrane that is permeable to air but not liquid or solid waste, an outer layer of impermeable plastic, and a collapsible spacer separating the inner and outer layers. Filled bags are connected to space vacuum, compacting and drying their contents.
Technical Paper

Comparison of Bioregenerative and Physical/Chemical Life Support Systems

2006-07-17
2006-01-2082
Popular depictions of space exploration as well as government life support research programs have long assumed that future planetary bases would rely on small scale, closed ecological systems with crop plants producing food, water, and oxygen and with bioreactors recycling waste. In actuality, even the most advanced anticipated human life support systems will use physical/ chemical systems to recycle water and oxygen and will depend on food from Earth. This paper compares bioregenerative and physical/chemical life support systems using Equivalent System Mass (ESM), which gauges the relative cost of hardware based on its mass, volume, power, and cooling requirements. Bioregenerative systems are more feasible for longer missions, since they avoid the cost of continually supplying food.
Technical Paper

Compressing Aviation Data in XML Format

2003-09-08
2003-01-3011
Design, operations and maintenance activities in aviation involve analysis of variety of aviation data. This data is typically in disparate formats making it difficult to use with different software packages. Use of a self-describing and extensible standard called XML provides a solution to this interoperability problem. While self-describing nature of XML makes it easy to reuse, it also increases the size of data significantly. A natural solution to the problem is to compress the data using suitable algorithm and transfer it in the compressed form. We found that XML-specific compressors such as Xmill and XMLPPM generally outperform traditional compressors. However, optimal use of Xmill requires of discovery of optimal options to use while running Xmill. Manual discovery of optimal setting can require an engineer to experiment for weeks.
X