Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

1000-Hour Durability Evaluation of a Prototype 2007 Diesel Engine with Aftertreatment Using B20 Biodiesel Fuel

2009-11-02
2009-01-2803
A prototype 2007 ISL Cummins diesel engine equipped with a diesel oxidation catalyst (DOC), diesel particle filter (DPF), variable geometry turbocharger (VGT), and cooled exhaust gas recirculation (EGR) was tested at Southwest Research Institute (SwRI) under a high-load accelerated durability cycle for 1000 hours with B20 soy-based biodiesel blends and ultra-low sulfur diesel (ULSD) fuel to determine the impact of B20 on engine durability, performance, emissions, and fuel consumption. At the completion of the 1000-hour test, a thorough engine teardown evaluation of the overhead, power transfer, cylinder, cooling, lube, air handling, gaskets, aftertreatment, and fuel system parts was performed. The engine operated successfully with no biodiesel-related failures. Results indicate that engine performance was essentially the same when tested at 125 and 1000 hours of accumulated durability operation.
Technical Paper

A Modular Battery Management System for HEVs

2002-06-03
2002-01-1918
Proper electric and thermal management of an HEV battery pack, consisting of many modules of cells, is imperative. During operation, voltage and temperature differences in the modules/cells can lead to electrical imbalances from module to module and decrease pack performance by as much as 25%. An active battery management system (BMS) is a must to monitor, control, and balance the pack. The University of Toledo, with funding from the U.S. Department of Energy and in collaboration with DaimlerChrysler and the National Renewable Energy Laboratory has developed a modular battery management system for HEVs. This modular unit is a 2nd generation system, as compared to a previous 1st generation centralized system. This 2nd generation prototype can balance a battery pack based on cell-to-cell measurements and active equalization. The system was designed to work with several battery types, including lithium ion, NiMH, or lead acid.
Technical Paper

A Multi-Dimensional Benefit Assessment of Automated Mobility Platforms (AMP) for Large Facilities: Mobility, Energy, Equity, and Facility Management & Design

2023-09-05
2023-01-1512
The goal of the automated mobility platforms (AMPs) initiative is to raise the bar of service regarding equity and sustainability for public mobility systems that are crucial to large facilities, and doing so using electrified, energy efficient technology. Using airports as an example, the rapid growth in air travel demand has led to facility expansions and congested terminals, which directly impacts equity (e.g., increased challenges for Passengers with Reduced Mobility [PRMs]) and sustainability—both of which are important metrics often overlooked during the engineering design process.
Journal Article

A Second Life for Electric Vehicle Batteries: Answering Questions on Battery Degradation and Value

2015-04-14
2015-01-1306
Battery second use-putting used plug-in electric vehicle (PEV) batteries into secondary service following their automotive tenure-has been proposed as a means to decrease the cost of PEVs while providing low cost energy storage to other fields (e.g., electric utility markets). To understand the value of used automotive batteries, however, we must first answer several key questions related to battery degradation, including: How long will PEV batteries last in automotive service? How healthy will PEV batteries be when they leave automotive service? How long will retired PEV batteries last in second-use service? How well can we best predict the second-use lifetime of a used automotive battery? Under the support of the U.S. Department of Energy's Vehicle Technologies Office, the National Renewable Energy Laboratory has developed a methodology and the requisite tools to answer these questions, including the Battery Lifetime Simulation Tool (BLAST).
Journal Article

A Statistical Characterization of School Bus Drive Cycles Collected via Onboard Logging Systems

2013-09-24
2013-01-2400
In an effort to characterize the dynamics typical of school bus operation, National Renewable Energy Laboratory (NREL) researchers set out to gather in-use duty cycle data from school bus fleets operating across the country. Employing a combination of Isaac Instruments GPS/CAN data loggers in conjunction with existing onboard telemetric systems resulted in the capture of operating information for more than 200 individual vehicles in three geographically unique domestic locations. In total, over 1,500 individual operational route shifts from Washington, New York, and Colorado were collected. Upon completing the collection of in-use field data using either NREL-installed data acquisition devices or existing onboard telemetry systems, large-scale duty-cycle statistical analyses were performed to examine underlying vehicle dynamics trends within the data and to explore vehicle operation variations between fleet locations.
Technical Paper

A Techno-Economic Analysis of BEV Service Providers Offering Battery Swapping Services

2013-04-08
2013-01-0500
Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage potential buyers. A subscription model in which a service provider owns the battery and supplies access to battery swapping infrastructure could reduce upfront and battery replacement costs with a predictable monthly fee, while expanding BEV range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, battery life, etc. The National Renewable Energy Laboratory has applied its Battery Ownership Model to compare the economics and utility of BEV battery swapping service plan options to more traditional direct ownership options.
Technical Paper

A Techno-Economic Analysis of PEV Battery Second Use: Repurposed-Battery Selling Price and Commercial and Industrial End-User Value

2012-04-16
2012-01-0349
Accelerated market penetration of plug-in electric vehicles (PEVs) is presently restricted by the high cost of batteries. Deployment of grid-connected energy storage, which could increase the reliability, efficiency, and cleanliness of the grid, is similarly inhibited by the cost of batteries. Research, development, and manufacturing are underway to reduce cost by lowering material costs, enhance process efficiencies, and increase production volumes. Another approach under consideration is to recover a fraction of the battery cost after the battery has been retired from vehicular service via reuse in other applications, where it may still have sufficient performance to meet the requirements of other energy-storage applications.
Technical Paper

ADOPT: A Historically Validated Light Duty Vehicle Consumer Choice Model

2015-04-14
2015-01-0974
The Automotive Deployment Options Projection Tool (ADOPT) is a light-duty vehicle consumer choice and stock model supported by the U.S. Department of Energy's Vehicle Technologies Office. It estimates technology improvement impacts on future U.S. light-duty vehicles sales, petroleum use, and greenhouse gas emissions. ADOPT uses techniques from the multinomial logit method and the mixed logit method to estimate vehicle sales. Specifically, it estimate sales based on the weighted value of key attributes including vehicle price, fuel cost, acceleration, range and usable volume. The average importance of several attributes changes nonlinearly across its range and changes with income. For several attributes, a distribution of importance around the average value is used to represent consumer heterogeneity. The majority of existing vehicle makes, models, and trims are included to fully represent the market. The Corporate Average Fuel Economy regulations are enforced.
Technical Paper

Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles

2013-04-08
2013-01-1453
Hybrid electric vehicles, plug-in hybrid electric vehicles, and battery electric vehicles offer the potential to reduce both oil imports and greenhouse gases, as well as to offer a financial benefit to the driver. However, assessing these potential benefits is complicated by several factors, including the driving habits of the operator. We focus on driver aggression, i.e., the level of acceleration and velocity characteristic of travel, to (1) assess its variation within large, real-world drive datasets, (2) quantify its effect on both vehicle efficiency and economics for multiple vehicle types, (3) compare these results to those of standard drive cycles commonly used in the industry, and (4) create a representative drive cycle for future analyses where standard drive cycles are lacking.
Technical Paper

Achievement of Low Emissions by Engine Modification to Utilize Gas-to-Liquid Fuel and Advanced Emission Controls on a Class 8 Truck

2005-10-24
2005-01-3766
A 2002 Cummins ISM engine was modified to be optimized for operation on gas-to-liquid (GTL) fuel and advanced emission control devices. The engine modifications included increased exhaust gas recirculation (EGR), decreased compression ratio, and reshaped piston and bowl configuration. The emission control devices included a deNOx filter and a diesel particle filter. Over the transient test, the emissions met the 2007 standards. In July 2004, the modified engine was installed into a Class 8 tractor for use by a grocery fleet. Chassis emission testing of the modified vehicle was conducted at the National Renewable Energy Laboratory's (NREL) Renewable Fuels and Lubricants (ReFUEL) facility. Testing included hot and cold replicate Urban Dynamometer Driving Schedule (UDDS) and New York Composite (NYComp) cycles and several steady-state points. The objective of the testing was to demonstrate the vehicle's with the modified engine.
Technical Paper

Achieving Tier 2 Bin 5 Emission Levels with a Medium Duty Diesel Pick-Up and a NOX Adsorber, Diesel Particulate Filter Emissions System - NOX Adsorber Management

2004-03-08
2004-01-0585
Increasing fuel costs and the desire for reduced dependence on foreign oil has brought the diesel engine to the forefront of future medium-duty vehicle applications in the United States due to its higher thermal efficiency and superior durability. The main obstacle to the increased use of diesel engines in this platform is the upcoming extremely stringent, Tier 2 emission standard. In order to succeed, diesel vehicles must comply with emissions standards while maintaining their excellent fuel economy. The availability of technologies such as common rail fuel injection systems, low sulfur diesel fuel, NOX adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with these future requirements. In meeting the Tier 2 emissions standards, the heavy light-duty trucks (HLDTs) and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. In support of this, the U.S.
Technical Paper

Achieving Tier 2 Bin 5 Emission Levels with a Medium Duty Diesel Pick-Up and a NOX Adsorber, Diesel Particulate Filter Emissions System-Exhaust Gas Temperature Management

2004-03-08
2004-01-0584
Increasing fuel costs and the desire for reduced dependence on foreign oil has brought the diesel engine to the forefront of future medium-duty vehicle applications in the United States due to its higher thermal efficiency and superior durability. The main obstacle to the increased use of diesel engines in this platform is the upcoming extremely stringent, Tier 2 emission standard. In order to succeed, diesel vehicles must comply with emissions standards while maintaining their excellent fuel economy. The availability of technologies such as common rail fuel injection systems, low sulfur diesel fuel, NOX adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with these future requirements. In meeting the Tier 2 emissions standards, the heavy light-duty trucks (HLDTs) and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. In support of this, the U.S.
Journal Article

Advancing Platooning with ADAS Control Integration and Assessment Test Results

2021-04-06
2021-01-0429
The application of cooperative adaptive cruise control (CACC) to heavy-duty trucks known as truck platooning has shown fuel economy improvements over test track ideal driving conditions. However, there are limited test data available to assess the performance of CACC under real-world driving conditions. As part of the Cummins-led U.S. Department of Energy Funding Opportunity Announcement award project, truck platooning with CACC has been tested under real-world driving conditions and the results are presented in this paper. First, real-world driving conditions are characterized with the National Renewable Energy Laboratory’s Fleet DNA database to define the test factors. The key test factors impacting long-haul truck fuel economy were identified as terrain and highway traffic with and without advanced driver-assistance systems (ADAS).
Technical Paper

Alternative Fuel Truck Evaluation Project - Design and Preliminary Results

1998-05-04
981392
The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. This paper summarizes the design of the project and early results from the first two sites. Data collection is planned for operations, maintenance, truck system descriptions, emissions, duty cycle, safety incidents, and capital costs and operating costs associated with the use of alternative fuels in trucking.
Technical Paper

Alternative Fuel Vehicle Fleet Buyer's Guide

1999-05-03
1999-01-1510
Fleet managers need a tool to assist them in assessing their need to comply with EPAct and to provide them with the ability to obtain information that will allow them to make alternative fuel vehicle purchasing decisions. This paper will describe the Web-based tool that will inform a fleet manager, based on their geographic location, the type of fleet they own or operate, and the number and types of vehicles in their fleet, whether or not they need to meet the requirements of EPAct, and, if so, the percentage of new vehicle purchases needed to comply with the law. The tool provides detailed specifications on available OEM alternative fuel vehicles, including the purchase cost of the vehicles, fuel and fuel system characteristics, and incentives and rebates surrounding the purchase of each vehicle. The full set of federal, state, and local incentives is made available through the tool, as well as detailed access to refueling site and dealership locations.
Technical Paper

An Emission and Performance Comparison of the Natural Gas Cummins Westport Inc. C-Gas Plus Versus Diesel in Heavy-Duty Trucks

2002-10-21
2002-01-2737
Cummins Westport Inc. (CWI) released for production the latest version of its C8.3G natural gas engine, the C Gas Plus, in July 2001. This engine has increased ratings for horsepower and torque, a full-authority engine controller, wide tolerance to natural gas fuel (the minimum methane number is 65), and improved diagnostics capability. The C Gas Plus also meets the California Air Resources Board optional low-NOx (2.0 g/bhp-h) emission standard for automotive and urban buses. Two pre-production C Gas Plus engines were operated in a Viking Freight fleet for 12 months as part of the U.S. Department of Energy's Fuels Utilization Program. In-use exhaust emissions, fuel economy, and fuel cost were collected and compared with similar 1997 Cummins C8.3 diesel tractors. CWI and the West Virginia University developed an ad-hoc test cycle to simulate the Viking Freight fleet duty cycle from in-service data collected with data loggers.
Technical Paper

Analysis of Fast Charging Station Network for Electrified Ride-Hailing Services

2018-04-03
2018-01-0667
Today’s electric vehicle (EV) owners charge their vehicles mostly at home and seldom use public direct current fast charger (DCFCs), reducing the need for a large deployment of DCFCs for private EV owners. However, due to the emerging interest among transportation network companies to operate EVs in their fleet, there is great potential for DCFCs to be highly utilized and become economically feasible in the future. This paper describes a heuristic algorithm to emulate operation of EVs within a hypothetical transportation network company fleet using a large global positioning system data set from Columbus, Ohio. DCFC requirements supporting operation of EVs are estimated using the Electric Vehicle Infrastructure Projection tool. Operation and installation costs were estimated using real-world data to assess the economic feasibility of the recommended fast charging stations.
Technical Paper

Analysis of the Unsteady Wakes of Heavy Trucks in Platoon Formation and Their Potential Influence on Energy Savings

2021-04-06
2021-01-0953
The authors present transient wind velocity measurements from two successive, well-documented truck platooning track-test campaigns to assess the wake-shedding behavior experienced by trucks in various platoon formations. Utilizing advanced analytics of data from fast-response (100-200-Hz) multi-hole pressure probes, this analysis examines aerodynamic flow features and their relationship to energy savings during close-following platoon formations. Applying Spectral analysis to the wind velocity signals, we identify the frequency content and vortex-shedding behavior from a forward truck trailer, which dominates the flow field encountered by the downstream trucks. The changes in dominant wake-shedding frequencies correlate with changes to the lead and follower truck fuel savings at short separation distances.
Journal Article

Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback

2012-04-16
2012-01-0494
While it is well known that “MPG will vary” based on how one drives, little independent research exists on the aggregate fuel savings potential of improving driver efficiency and on the best ways to motivate driver behavior changes. This paper finds that reasonable driving style changes could deliver significant national petroleum savings, but that current feedback approaches may be insufficient to convince many people to adopt efficient driving habits. To quantify the outer bound fuel savings for drive cycle modification, the project examines completely eliminating stop-and-go driving plus unnecessary idling, and adjusting acceleration rates and cruising speeds to ideal levels. Even without changing the vehicle powertrain, such extreme adjustments result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow.
Technical Paper

Bayesian Parameter Estimation for Heavy-Duty Vehicles

2017-03-28
2017-01-0528
Accurate vehicle parameters are valuable for design, modeling, and reporting. Estimating vehicle parameters can be a very time-consuming process requiring tightly-controlled experimentation. This work describes a method to estimate vehicle parameters such as mass, coefficient of drag/frontal area, and rolling resistance using data logged during standard vehicle operation. The method uses a Monte Carlo method to generate parameter sets that are fed to a variant of the road load equation. The modeled road load is then compared to the measured load to evaluate the probability of the parameter set. Acceptance of a proposed parameter set is determined using the probability ratio to the current state, so that the chain history will give a distribution of parameter sets. Compared to a single value, a distribution of possible values provides information on the quality of estimates and the range of possible parameter values. The method is demonstrated by estimating dynamometer parameters.
X