Refine Your Search

Topic

Search Results

Technical Paper

An Integrated Transient Analysis Simulation Model Applied in Thermal Loading Calculations of an Air-Cooled Diesel Engine Under Variable Speed and Load Conditions

1997-02-24
970634
A comprehensive transient analysis simulation model is used for the calculation of diesel engine performance under variable speed and load conditions. The analysis includes a detailed description of engine subsystems under transient conditions, thus accounting for the continuously changing character of transient operation, simulating among others the fuel injection, transient mechanical friction, heat losses to the walls and governor operation. The results of engine performance, at every time step during the transient event, are used as inputs for the formulation of thermal boundary conditions, which are needed for the calculation in a parallel way of the thermal transients propagating inside the engine structure.
Technical Paper

Comparative Evaluation of EGR, Intake Water Injection and Fuel/Water Emulsion as NOx Reduction Techniques for Heavy Duty Diesel Engines

2007-04-16
2007-01-0120
Despite the improvement in HD Diesel engine out emissions future emission legislation requires significant reduction of both NOx and particulate matter. To accomplish this task various solutions exist involving both internal and external measures. As widely recognized, it will be possibly required to employ both types of measures to meet future emission limits. Towards this direction, it is necessary to reduce NOx further using internal measures. Several solutions exist in that area, but the most feasible ones according to the present status of technical knowledge are EGR, water injection or fuel/water emulsions. These technologies aim to the reduction of both the gas temperature and oxygen concentration inside the combustion chamber that strongly affect NOx formation. However, there remain open points mainly concerning the effectiveness of water addition techniques and penalties related to bsfc and soot emissions.
Technical Paper

DIESEL ENGINE TRANSIENT OPERATION WITH TURBOCHARGER COMPRESSOR SURGING

2001-03-05
2001-01-1241
The transient operation of a Diesel engine when the turbocharger compressor is driven to its unstable region was examined though detailed simulation. This was accomplished by using a mathematical model, capable of predicting the behavior of a compression system including the case where compressor surging occurs. This model was tested for a simple compression system, and validated against available experimental data. After that, it was incorporated into a detailed reciprocating engine simulation code. Transient engine operation cases in which compressor surging occurred were simulated and the derived results for the behavior of the compressor and engine are presented.
Technical Paper

Description of in-Cylinder Combustion Processes in HCCI Engines Using a Multi-Zone Model

2005-04-11
2005-01-0171
In the present work, a multi-zone model is presented for the simulation of HCCI engines. This model is an improvement of a previous one developed by the authors. The present model describes the combustion, heat and mass transfer processes for the closed part of the engine cycle, i.e. compression, combustion and expansion. The zones occupy geometrical positions within the engine cylinder and exchange heat and mass throughout the compression and expansion strokes, based on their spatial configuration. Heat exchange is considered between zones and to the cylinder wall. A phenomenological model has been developed to describe mass exchange between zones and the flow of a portion of the in-cylinder mixture in and out of the crevice region. The crevice flow is a new feature and is included in the present model since the crevice regions are considered to contribute to unburned HC emissions. Another new feature is the incorporation of chemical kinetics, based on combustion chemistry reactions.
Technical Paper

Development and Validation of a 3-D Multi-Zone Combustion Model for the Prediction of DI Diesel Engines Performance and Pollutants Emissions

1998-02-23
981021
A three-dimensional multi-zone combustion model is developed for the description of the combustion mechanism inside the engine cylinder of direct injection diesel engines. Various multi-zone models have been proposed in the past for the prediction of DI diesel engine performance and emissions. These models offer an alternative tool if one wants to avoid the use of other more complicated and sophisticated flow models that require high computational times. Most of them have the disadvantage that they focus mainly on emissions, failing to predict at the same time engine performance adequately. In almost all multi-zone models the resulting fuel jet after injection, which is divided into zones, is assumed to be symmetrical around its axis. In the present work a different approach is followed. The fuel jet is divided into zones in the three dimensions overcoming the need for the previous symmetry assumption.
Technical Paper

Development of a New Multi-Zone Model for the Description of Physical Processes in HCCI Engines

2004-03-08
2004-01-0562
Homogeneous Charge Compression Ignition (HCCI) engines have the potential of reducing NOx emissions as compared to conventional Diesel or SI engines. Soot emissions are also very low due to the premixed nature of combustion. However, the unburned hydrocarbon emissions are relatively high and the same holds for CO emissions. The formation of these pollutants, for a given fuel, is strongly affected by the temperature distribution as well as by the charge motion within the engine cylinder. The foregoing physical mechanisms determine the local ignition timing and burning rate of the charge affecting engine efficiency, performance and stability. Obviously the success of any model describing HCCI combustion depends on its ability to describe adequately both the chemistry of combustion and the physical phenomena, i.e. heat and mass transfer within the cylinder charge. In the present study a multi-zone model is developed to describe the heat and mass transfer mechanism within the cylinder.
Technical Paper

Development of a Simulation Model for Direct Injection Dual Fuel Diesel-Natural Gas Engines

2000-03-06
2000-01-0286
During the last years a great deal of effort has been made for the reduction of pollutant emissions from direct injection Diesel Engines. Towards these efforts engineers have proposed various solutions, one of which is the use of gaseous fuels as a supplement for liquid diesel fuel. These engines are referred to as dual combustion engines i.e. they use conventional diesel fuel and gaseous fuel as well. The ignition of the gaseous fuel is accomplished through the liquid fuel, which is auto-ignited in the same way as in common diesel engines. One of the fuels used is natural gas, which has a relatively high auto-ignition temperature. This is extremely important since the CR of most conventional diesel engines can be maintained. In these engines the released energy is produced partially from the combustion of natural gas and from the combustion of liquid diesel fuel.
Journal Article

Effect of Fuel Chemical Structure and Properties on Diesel Engine Performance and Pollutant Emissions: Review of the Results of Four European Research Programs

2008-04-14
2008-01-0838
During recent years, the deterioration of greenhouse phenomenon, in conjunction with the continuous increase of worldwide fleet of vehicles and crude oil prices, raised heightened concerns over both the improvement of vehicle mileage and the reduction of pollutant emissions. Diesel engines have the highest fuel economy and thus, highest CO2 reduction potential among all other thermal propulsion engines due to their superior thermal efficiency. However, particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines are comparatively higher than those emitted from modern gasoline engines. Therefore, reduction of diesel emitted pollutants and especially, PM and NOx without increase of specific fuel consumption or let alone improvement of diesel fuel economy is a difficult problem, which requires immediate and drastic actions to be taken.
Technical Paper

Evaluation of Various Dynamic Issues During Transient Operation of Turbocharged Diesel Engine with Special Reference to Friction Development

2007-04-16
2007-01-0136
The modeling of transient turbocharged diesel engine operation appeared in the early seventies and continues to be in the focal point of research, due to the importance of transient response in the everyday operating conditions of engines. The majority of research has focused so far on issues concerning thermodynamic modeling, as these directly affect heat release predictions and consequently performance and pollutants emissions. On the other hand, issues concerning the dynamics of transient operation are often disregarded or over-simplified, possibly for the sake of speeding up program execution time. In the present work, an experimentally validated transient diesel engine simulation code is used to study and evaluate the importance of such dynamic issues. First of all, the development of various forces (piston, connecting rod, crank and main crankshaft bearings) is computed and illustrated in order to evaluate the importance of abrupt load increases on the bearings durability.
Technical Paper

Evaluation of a New Diagnostic Technique to Detect and Account for Load Variation during Cylinder Pressure Measurement of Large-Scale Four-Stroke Diesel Engines

2012-04-16
2012-01-1342
High efficiency, power concentration and reliability are the main requirements from Diesel Engines that are used in most technical applications. This becomes more important with the increase of engine size. For this reason the aforementioned characteristics are of significant priority for both marine and power generation applications. To guarantee efficient engine operation and maximum power output, both research and commercial communities are increasingly interested in methods used for supervision, fault-detection and fault diagnosis of large scale Diesel Engines. Most of these methods make use of the measured cylinder pressure to estimate various critical operating parameters such as, brake power, fuel consumption, compression status, etc. The results obtained from the application of any diagnostic technique, used to assess the current engine operating condition and identify the real cause of the malfunction or fault, depend strongly on the quality of these data.
Technical Paper

Exhaust Phases in a DI Diesel Engine Based on Instantaneous Cyclic Heat Transfer Experimental Data

2013-04-08
2013-01-1646
In the present paper a new method is proposed for the analysis of the two main phases of the engine exhaust stroke blowdown and displacement. The method is based on the processing of fast-response experimental temperatures obtained from the exhaust manifold wall during the engine cycle. A novel experimental installation has been developed, which separates the engine transient temperature signals into two groups, namely the long- and the short- term response ones. This has been achieved by processing the respective signals acquired from two independent data acquisition systems. Furthermore, a new pre-amplification unit for fast response thermocouples, appropriate heat flux sensors and an innovative, object-oriented, control code for fast data acquisition have been designed and applied. For the experimental procedure a direct injection (DI), air-cooled diesel engine is used.
Journal Article

Experimental Assessment of Instantaneous Heat Transfer in the Combustion Chamber and Exhaust Manifold Walls of Air-Cooled Direct Injection Diesel Engine

2008-04-14
2008-01-1326
An experimental analysis is carried out to investigate several heat transfer characteristics during the engine cycle, in the combustion chamber and exhaust manifold walls of a direct injection (DI), air-cooled, diesel engine. For this purpose, a novel experimental installation has been developed, which separates the engine transient temperature signals into two groups, namely the long-and the short- term response ones, processing the respective signals in two independent data acquisition systems. Furthermore, a new pre-amplification unit for fast response thermocouples, appropriate heat flux sensors and an innovative, object-oriented, control code for fast data acquisition have been designed and applied. Experimentally obtained cylinder pressure diagrams together with semi-empirical equations for instantaneous heat transfer were used as basis for the calculation of overall heat transfer coefficient.
Technical Paper

Experimental Heat Release Rate Analysis in Both Chambers of an Indirect Injection Turbocharged Diesel Engine at Various Load and Speed Conditions

2005-04-11
2005-01-0926
A heat release analysis of experimental pressure diagrams, appropriate for indirect injection (divided chamber) diesel engines, is developed and used to obtain heat release rate profiles during the combustion process in each combustion chamber. Attention is paid to the correct processing of the data, due to the inherent complexity of the mass interchange between the two combustion chambers. The analysis concerns a turbocharged, indirect injection diesel engine, having a very small pre-chamber and a very narrow connecting passageway, operated at various load and speed conditions, located at the authors' laboratory. An extended experimental work, at steady-state conditions, is conducted on a specially developed test bed configuration of this engine, which is connected to a high-speed data acquisition and processing system.
Technical Paper

Experimental Investigation of Instantaneous Cyclic Heat Transfer in the Combustion Chamber and Exhaust Manifold of a DI Diesel Engine under Transient Operating Conditions

2009-04-20
2009-01-1122
In this paper, the results are presented from the analysis of the second stage of an experimental investigation with the aim to provide insight to the cyclic, instantaneous heat transfer phenomena occurring in both the cylinder head and exhaust manifold wall surfaces of a direct injection (DI), air-cooled diesel engine. Results from the first stage of the investigation concerning steady-state engine operation have already been presented by the authors in this series. In this second stage, the mechanism of cyclic heat transfer was investigated during engine transient events, viz. after a sudden change in engine speed and/or load, both for the combustion chamber and exhaust manifold surfaces. The modified experimental installation allowed both long- and short-term signal types to be recorded on a common time reference base during the transient event.
Technical Paper

Experimental Investigation of the Effect of Fuel Composition on the Formation of Pollutants in Direct Injection Diesel Engines

1999-03-01
1999-01-0189
A great deal of research is taking place at the present time in the field of diesel engines, especially regarding the emission of gaseous pollutants and soot. This research is essential for engine manufacturers since it is difficult for diesel engines to meet current standards regarding soot and nitric oxide emissions. The problem will become even more severe when the new legislation will be applicable requiring a 50% reduction of existing levels. Many manufacturers and researchers feel that engines will be difficult to meet this criterion without the use of other techniques such as gas aftertreatment or newly developed fuels (low sulfur content, etc.). The aim of this research is to examine the effect of fuel composition and physical properties on the mechanism of combustion and pollutants formation.
Technical Paper

Identification and Correction of the Error Induced by the Sampling Method Used to Monitor Cylinder Pressure of Reciprocating Internal Combustion Engines

2012-04-16
2012-01-1155
Cylinder pressure measurements are common practice for internal combustion reciprocating engines during field or lab applications for the purpose of combustion analysis, condition monitoring etc. The most accurate method is to measure cylinder pressure using a crank angle encoder as a trigger source to guarantee cylinder pressure measurement at predefined crank angle events. This solution, even though favorable, presents a number of practical difficulties for field applications and increased cost, for this reason its use is practically restricted to lab applications. Therefore a commonly used approach for ad hoc measurements is to digitize samples at fixed time intervals and then convert time into crank angle assuming a constant rotational speed. But if engine rotational speed is not constant within the engine cycle this may result to incorrect cylinder pressure CA referencing.
Technical Paper

Modeling the Effects of EGR on a Heavy Duty DI Diesel Engine Using a new Quasi-Dimensional Combustion Model

2005-04-11
2005-01-1125
The model has already been applied on an old technology, naturally aspirated HSDI Diesel engine and on a heavy-duty turbocharged DI one equipped with a high pressure PLN fuel injection system, and the results were satisfying as far as performance and pollutant emissions (Soot and NO) are concerned. Taking into account that the main scope of engine simulation models is to assist engineers and researchers to understand the complex mechanisms involved in diesel engine combustion and pollutants formation and that through the continues engine development, new techniques are implemented, it is obvious that engine simulation models must always be enhanced with new features in order to be kept up-to-date. In this study the model has been modified to take into account the effect of EGR, since the latter one is a measure that will be used more extensively in the future to control NO emissions from turbocharged HDDI Diesel engines.
Technical Paper

Parametric Study of the Availability Balance in an Internal Combustion Engine Cylinder

2001-03-05
2001-01-1263
The current work uses a method developed by the authors for both combustion irreversibility and working medium availability computations in a high speed, naturally aspirated, four stroke, internal combustion engine cylinder. The objective of the study was to extrapolate already published results of the second-law analysis of diesel engine operation by studying parametrically the effect of main operating parameters such as engine speed of rotation, injection timing, and fuel composition. Extensive experimental data were available for the case of dodecane injection, which were used for the determination of the fuel reaction rate. Computationally, the same reaction rates were used for methane and methanol injection. The production rate of irreversibility during combustion was analytically calculated as a function of the fuel reaction rate with the combined use of first and second-law arguments and a chemical equilibrium hypothesis.
Journal Article

Possibility to Determine Diesel Engine Condition and Tuning from the Application of a Diagnostic Technique at a Single Operating Point

2009-04-20
2009-01-0681
A difficulty which exists when applying diagnostic techniques on large-scale diesel engines operating on the field, is that usually it is not possible to obtain measurement data at a wide engine operating range due to a number of constraints. In the present work is investigated the possibility to overcome this practical difficulty originating from the test procedure for engines operating on the field (i.e. marine or stationary applications). The main objective is to examine if a diagnosis procedure provides similar results when applied at various engine operating conditions. For this purpose an existing diagnostic technique, developed by the authors, is applied at different operating conditions on a large-scale two-stroke diesel engine used for power generation in a Greek island.
Technical Paper

Recurrent and Time-Delay Neural Networks as Virtual Sensors for NOx Emissions in Marine Diesel Powertrains

2021-03-25
2021-01-5042
Neural networks (NN) for marine engines, using raw measurement data from laboratory measurements, are developed and verified. These models can be utilized as virtual sensors of engine-out NOx emissions and lambda (λ). Investigations for the optimal NN configuration targeting models were carried so they can capture the dynamic behavior of a marine diesel engine, can generalize within the training range, and have the minimum complexity due to execution performance and portability reasons. Two configurations of NNs are investigated, the recurrent (RNN) and the time-delay neural network (TDNN). The resulting NN models are deployed on a prototype engine control unit (ECU) platform and are validated in real time for operating points and patterns that are not included in the training dataset. The real-time validation shows that the predicted quantities remain consistent in most operating areas and the dynamic behavior of the system is captured and reproduced accurately.
X