Refine Your Search

Topic

Author

Search Results

Technical Paper

54 The Combustion Phenomena Under Corona Discharge Application

2002-10-29
2002-32-1823
In this study, the effect of corona discharge on the combustion phenomenon has been made clear. A homogeneous propane-air mixture was used and six equivalence ratios were tested. For generating the positive and negative corona discharge, a non-uniform electric field was applied to the combustion chamber by the needle to plane gap. One or five needle-shaped electrodes were used to change the corona discharge state. When the positive corona discharge was applied, the luminescence from corona with five electrodes was weak as compared with that of one needle-shaped electrode. When the negative corona discharge was applied, the luminescence from corona and combustion were not affected by the number of electrode. When the positive corona discharge was applied by low voltage, the combustion was improved in the case of one needle-shaped electrode, but the index of combustion with one needle-shaped electrode was almost equal to that of five electrodes when the high voltage was applied.
Technical Paper

8 A Study of the Influence of Fuel Temperature on Emission Characteristics and Engine Performance of Compression Ignition Engine

2002-10-29
2002-32-1777
In this study, the heated fuels were provided to the diesel engine in order to activate the fuel before the injection. Two test fuels: the normal diesel fuel and cetane, which have different boiling points were used. For both normal diesel fuel and cetane, crank angles at ignition and maximum pressure are delayed and the maximum combustion pressure is decreased as the fuel temperature rises. In cases of large and middle mass flow rate of fuel injection, the brake thermal efficiency and brake mean effective pressure are decreased when the fuel temperature is higher than 570 [K]. However, in the case of small mass flow rate of fuel injection, the brake thermal efficiency is almost independent of fuel temperature. HC and CO concentrations in the exhaust gas emission show constant values regardless of fuel temperature. However, NOx concentration is gradually decreased as the fuel temperature rises.
Technical Paper

A Study of Combustion in an HCCI Engine Using Non-Equilibrium Plasma Discharge Assist

2017-11-05
2017-32-0084
This study focused on a non-equilibrium plasma discharge as a means of assisting HCCI combustion.Experiments were conducted with a four-stroke single-cylinder engine fitted with a spark electrode in the top of the combustion chamber for continuously generating non-equilibrium plasma from the intake stroke to the exhaust stroke. The results showed that applying non-equilibrium plasma to the HCCI test engine advanced the main combustion period that otherwise tended to be delayed as the engine speed was increased. In addition, it was found that the combined use of exhaust gas recirculation and non-equilibrium plasma prevented a transition to partial combustion while suppressing cylinder pressure oscillations at high loads.
Technical Paper

A Study of HCCI Combustion Assisted by a Streamer Discharge Based on Visualization of the Entire Bore Area

2014-11-11
2014-32-0001
This study investigated the effect of streamer discharge on autoignition and combustion in a Homogeneous Charge Compression Ignition (HCCI) engine. A continuous streamer discharge was generated in the center of the combustion chamber of a 2-stroke optically accessible engine that allowed visualization of the entire bore area. The experimental results showed that the flame was initiated and grew from the vicinity of the electrode under the application of a streamer discharge. Subsequently, rapid autoignition (HCCI combustion) occurred in the unburned mixture in the end zone, thus indicating that HCCI combustion was accomplished assisted by the streamer discharge. In other word, ignition timing of HCCI combustion was advanced after the streamer discharging process, and the initiation behavior of the combustion flame was made clear under that condition.
Journal Article

A Study of HCCI Combustion using Spectroscopic Techniques and Chemical Kinetic Simulations

2009-11-03
2009-32-0070
This study was conducted to investigate the influence of low-temperature reactions on the Homogeneous Charge Compression Ignition (HCCI) combustion process. Specifically, an investigation was made of the effect of the residual gas condition on low-temperature reactions, autoignition and the subsequent state of combustion following ignition. Light emission and absorption spectroscopic measurements were made in the combustion chamber in order to investigate low-temperature reactions in detail. In addition, chemical kinetic simulations were performed to validate the experimental results and to analyze the elemental reaction process. The results made clear the formation behavior of the chemical species produced during low-temperature HCCI reactions.
Technical Paper

A Study of IDI 2-Stroke Cycle Compression Ignition Engine with DME

2009-11-03
2009-32-0063
DME is alternate fuel for diesel engines, however DME has defects such as small lower calorific value, inferior lubricity and weak fuel penetration. To compensate disadvantages, In-direct injection 2-stroke diesel engine with low pressure fuel injection system was proposed. The fuel injection timing near TDC gave good performance because the heat loss of low temperature oxidation reaction reduced. The brake torque and brake thermal efficiency of 2-stroke IDI diesel engine were lower than those of 4-stroke engine. However, the exhaust gas emissions were very low level because the intake air leaked through the exhaust port and the exhaust gas was diluted.
Technical Paper

A Study of Ignition and Combustion in an SI Engine Using Multistage Pulse Discharge Ignition

2017-11-05
2017-32-0069
Lean-burn technology is regarded as one effective way to increase the efficiency of internal combustion engines. However, stable ignition is difficult to ensure with a lean mixture. It is expected that this issue can be resolved by improving ignition performance as a result of increasing the amount of energy discharged into the gaseous mixture at the time of ignition. There are limits, however, to how high ignition energy can be increased from the standpoints of spark plug durability, energy consumption and other considerations. Therefore, the authors have focused on a multistage pulse discharge (MSPD) ignition system that performs low-energy ignition multiple times. In this study, a comparison was made of ignition performance between MSPD ignition and conventional spark ignition (SI). A high-speed camera was used to obtain visualized images of ignition in the cylinder and a pressure sensor was used to measure pressure histories in the combustion chamber.
Technical Paper

A Study of Knocking Using Ion Current and Light Emission

2003-09-16
2003-32-0038
This study attempted to elucidate combustion conditions in a progression from normal combustion to knocking by analyzing the ion current and light emission intensity that occurred during this transition. With the aim of understanding the combustion states involved, the ion current was measured at two positions in the combustion chamber. Light emission spectroscopy was applied to examine preflame reactions that are observed prior to autoignition in the combustion process of hydrocarbon fuels. The results obtained by analyzing the experimental data made clear the relationship between the ion current and light emission during the transition from normal combustion to knocking operation.
Journal Article

A Study of the Behavior of In-Cylinder Pressure Waves under HCCI Knocking by using an Optically Accessible Engine

2015-09-01
2015-01-1795
This study investigated the origin of knocking combustion accompanied by pressure wave and strong pressure oscillations in a Homogeneous Charge Compression Ignition (HCCI) engine. Experiments were conducted with a two-stroke single cylinder optically accessible engine that allowed the entire bore area to be visualized. The test fuel used was n-heptane. The equivalence ratio and intake temperature were varied to induce a transition from moderate HCCI combustion to extremely rapid HCCI combustion accompanied by in-cylinder pressure oscillations. Local autoignition and pressure wave behavior under each set of operating conditions were investigated in detail on the basis of high-speed in-cylinder visualization and in-cylinder pressure analysis. As a result, under conditions where strong knocking occurs, a brilliant flame originates from the burned gas side in the process where the locally occurring autoignition gradually spreads to multiple locations.
Technical Paper

A Study of the Mechanism Producing Autoignition in an HCCI Engine Using In-Cylinder Spectroscopy and Chemical Kinetic Simulation

2012-10-23
2012-32-0079
This study examined Homogeneous Charge Compression Ignition (HCCI) combustion characteristics in detail on the basis of in-cylinder combustion visualization, spectroscopic measurements of light emission and absorption and chemical kinetic simulations. Special attention was focused on investigating and comparing the effects of the fuel octane number and residual gas on combustion characteristics. The results made clear the relationship between the production/consumption of formaldehyde (HCHO) in the HCCI autoignition process and flame development behavior in the cylinder. Additionally, it was found that both the fuel octane number and residual gas have the effect of moderating low-temperature oxidation reactions. Furthermore, it was observed that residual gas has the effect of shifting the temperature for the occurrence of the hot flame to a higher temperature range.
Technical Paper

A Study on Accomplishing Lean Combustion by Multistage Pulse Discharge Ignition Using an Optically Accessible Engine

2018-10-30
2018-32-0007
Lean burn technology has a problem of greater combustion fluctuation due to unstable initial flame formation and slow combustion. It is generally known that generating a flow field in the cylinder is effective for reducing combustion fluctuation and shortening the combustion period. In this study, we investigated the influence of the discharge condition and in-cylinder swirl flow on initial flame formation and ignition performance between conventional spark ignition (SI) and multistage pulse discharge (MSPD) ignition. Visualized photographs were obtained near the spark plug with a high-speed camera in an optically accessible engine. In-cylinder pressure analysis was also performed in order to explicate the combustion phenomena. The results revealed that ignition performance of both SI and MSPD was improved under a swirl flow condition in the cylinder and that combustion fluctuation was effectively reduced.
Technical Paper

A Study on Ion Current and OH Radical Luminescence Behavior in a Two-Stroke Engine

2000-01-15
2000-01-1424
In this research, an investigation was made of ion current and OH radical luminescence behavior in the progression from normal combustion to knocking operation. One pair each of an ion probe and a quartz observation window was fitted in the center and on the end of the combustion chamber. The peak values of the ion voltage drop and the OH radical emission intensity both increased as the cylinder head temperature and the cylinder pressure rose. It is possible to understand combustion conditions by analyzing measured waveformes of the ion voltage drop and the OH radical emission intensity.
Technical Paper

A Study on Temperature Distribution of Stirling Engine Regenerator

1999-08-02
1999-01-2506
The performance of Stirling engines depends on the performance of regenerators. Regenerators are primarily expected to have good temperature efficiency. In addition, the flow losses and dead space must be minimized. These factors, however, are in opposition to each other. Although a considerable amount of research has focused on these three factors, few studies have analyzed them in actual reciprocating flows. Moreover, it has not been possible to measure the temperature efficiency by using a working gas due to the rapid change of the gas temperature. Therefore, in this study, we measured the transition of the temperature in the reciprocating flows in a regenerator by using water instead of a gas and then examined the characteristics of the regenerator. Here, we report the observed transition of temperature, which almost coincided with results previously obtained by computer simulation.
Technical Paper

A Study on the Knocking Characteristics of an SI-HCCI Engine by Using In-Cylinder Visualization

2016-11-08
2016-32-0005
In-cylinder visualization of the entire bore area at an identical frame rate was used to investigate knocking conditions under spark ignition (SI) combustion and under Homogeneous Charge Compression Ignition (HCCI) combustion in the same test engine. A frequency analysis was also conducted on the measured pressure signals. The results revealed that a combustion regime accompanied by strong pressure oscillations occurred in both the SI and HCCI modes, which was presumably caused by rapid autoignition with attendant brilliant light emission that took place near the cylinder wall. It was found that the knocking timing was the dominant factor of this combustion regime accompanied by cylinder pressure oscillations in both the SI and HCCI combustion modes.
Technical Paper

A Study on the Practical Application of Cellulosic Liquefaction Fuel for Diesel Engine

2015-11-17
2015-32-0801
In recent years, it has been expected the conversion of wasted biomass to industry available energy. In this study, 80 wt.% of wood and 20 wt.% of polypropylene were liquefied by the mineral oil used as solvent. The liquefied material was distilled, and distillation fraction of temperature from 493 to 573 K was recognized as light oil fraction CLF (Cellulose Liquefaction Fuel) and that from 378 to 493 K was recognized as naphtha fraction CLF. CLFs were blended with light oil and, in engine performance test, mixing ratio of light oil fraction CLF was 5 wt.%, and in vehicle running test, weight mixing ratios were 5 or 10 wt.%. In engine performance test, indicator diagrams and rate of heat releases of light oil fraction CLF 5 wt.% mixed light oil were almost equivalent to those of light oil in all load conditions, and engine performance and exhaust gas emissions were also almost equivalent to light oil.
Technical Paper

An Analysis of Light Emission Intensity Behavior Corresponding to Intermediate Products in Different Places of the Combustion Chamber

2001-12-01
2001-01-1882
Knocking is one phenomenon that can be cited as a factor impeding efforts to improve the efficiency of spark-ignition engines. With the aim of understanding knocking better, light emission spectroscopy was applied in this study to examine preflame reactions that can be observed prior to autoignition in the combustion reaction process of hydrocarbon fuels. Attention was focused on light emission behavior at wavelengths corresponding to those of formaldehyde (HCHO), Vaidya's hydrocarbon flame band (HCO) and the OH radical in a forced progression from normal combustion to a knocking state. Light emission behavior was measured simultaneously in the center and in the end zone of the combustion chamber when the engine was operated on two different test fuels. The test fuels used were n-heptane (0 RON) and a blended fuel (70 RON) consisting of n-heptane (0 RON) and iso-octane (100 RON).
Technical Paper

An Effect of Cooled-EGR on Diesel Engine Performance Fueled with Coconut-oil Methyl Ester

2020-01-24
2019-32-0618
The purpose of this study is to explore an effect of cooled-EGR on the diesel engine performance fueled with coconut-oil methyl ester (CME). The exhaust gas was cooled by the water at room temperature and was fed to the intake manifold, and the EGR rate was changed from 0 % to 30 % at every 10 %. The engine performances were measured at several EGR rates, fuel injection pressures and timings. Test fuels were CME and commercial diesel fuel. In the case of high EGR rate at which the compression ignition was deteriorated, the ignition timing of CME was always earlier than that of diesel fuel, therefore CME had good ignitability as compared with diesel fuel under EGR application. When the fuel injection pressure was increased at high EGR rate, the ignition delay was improved by the fuel atomization and air-fuel mixing effect.
Technical Paper

An Experimental Study Concerning the influence of Hot Residual Gas On Combustion

2000-01-15
2000-01-1419
This research focused on the light emission behavior of the OH radical (characteristic spectrum of 306.4 [nm]) that plays a key role in combustion reactions, in order to investigate the influence of the residual gas on autoignition. Authors also analyzed on the heat release and thermodynamic mean temperature due to research activity state of unburned gas. The test engine used was a 2-stroke, air-cooled engine fitted with an exhaust pressure control valve in the exhaust manifold. Raising the exhaust pressure forcibly recirculated more exhaust gas internally. When a certain level of internal EGR is forcibly applied, the temperature of the unburned end gas is raised on account of heat transfer from the hot residual gas and also due to compression by piston motion. As a result, the unburned end gas becomes active and autoignition tends to occur.
Journal Article

Analysis of Interaction between Autoignition and Strong Pressure Wave Formation during Knock in a Supercharged SI Engine Based on High Speed Photography of the End Gas

2017-11-15
2017-32-0119
Engine knock is the one of the main issues to be addressed in developing high-efficiency spark-ignition (SI) engines. In order to improve the thermal efficiency of SI engines, it is necessary to develop effective means of suppressing knock. For that purpose, it is necessary to clarify the mechanism generating pressure waves in the end-gas region. This study examined the mechanism producing pressure waves in the end-gas autoignition process during SI engine knock by using an optically accessible engine. Occurrence of local autoignition and its development process to the generation of pressures waves were analyzed under several levels of knock intensity. The results made the following points clear. It was observed that end-gas autoignition seemingly progressed in a manner resembling propagation due to the temperature distribution that naturally formed in the combustion chamber. Stronger knock tended to occur as the apparent propagation speed of autoignition increased.
Technical Paper

Analysis of Knocking in an SI Engine based on In-cylinder: Spectroscopic Measurements and Visualization

2010-09-28
2010-32-0092
There are strong demands today to further improve the thermal efficiency of internal combustion engines against a backdrop of various environmental issues, including rising carbon dioxide (CO2) emissions and global warming. One factor that impedes efforts to improve the thermal efficiency of spark ignition engines is the occurrence of knocking. The aim of this study was to elucidate the details of knocking based on spectroscopic measurements and visualization of phenomena in the combustion chamber of a test engine that was operated on three primary reference fuels with different octane ratings (0 RON, 30 RON, and 50 RON). The ignition timing was retarded in the experiments to delay the progress of flame propagation, making it easier to capture the behavior of low-temperature oxidation reactions at the time knocking occurred.
X