Refine Your Search

Topic

Author

Search Results

Technical Paper

8 A Study of the Influence of Fuel Temperature on Emission Characteristics and Engine Performance of Compression Ignition Engine

2002-10-29
2002-32-1777
In this study, the heated fuels were provided to the diesel engine in order to activate the fuel before the injection. Two test fuels: the normal diesel fuel and cetane, which have different boiling points were used. For both normal diesel fuel and cetane, crank angles at ignition and maximum pressure are delayed and the maximum combustion pressure is decreased as the fuel temperature rises. In cases of large and middle mass flow rate of fuel injection, the brake thermal efficiency and brake mean effective pressure are decreased when the fuel temperature is higher than 570 [K]. However, in the case of small mass flow rate of fuel injection, the brake thermal efficiency is almost independent of fuel temperature. HC and CO concentrations in the exhaust gas emission show constant values regardless of fuel temperature. However, NOx concentration is gradually decreased as the fuel temperature rises.
Technical Paper

A Study of Autoignition Behavior and Knock Intensity in a SI Engine under Different Engine Speed by Using In-Cylinder Visualization

2017-11-05
2017-32-0050
Internal combustion engines have been required to achieve even higher efficiency in recent years in order to address environmental concerns. However, knock induced by abnormal combustion in spark-ignition engines has impeded efforts to attain higher efficiency. Knock characteristics during abnormal combustion were investigated in this study by in-cylinder visualization and spectroscopic measurements using a four-stroke air-cooled single-cylinder engine. The results revealed that knock intensity and the manner in which the autoignited flame propagated in the end gas differed depending on the engine speed.
Technical Paper

A Study of HCCI Operating Range Expansion by Applying Reaction Characteristics of Low-Carbon Alternative Fuels

2016-11-08
2016-32-0011
Issues that must be addressed to make Homogeneous Charge Compression Ignition (HCCI) engines a practical reality include the difficulty of controlling the ignition timing and suppression of rapid combustion under high load conditions. Overcoming these issues to make HCCI engines viable for practical application is indispensable to the further advancement of internal combustion engines. Previous studies have reported that the operating region of HCCI combustion can be expanded by using DME and Methane blended fuels.(1), (2), (3), (4), (5) The reason is that the reaction characteristics of these two low-carbon fuels, which have different ignition properties, have the effect of inducing heat release in two stages during main combustion, thus avoiding excessively rapid combustion. However, further moderation of rapid combustion in high-load region is needed to expand the operation region. This study focused on supercharging and use of blended fuels.
Technical Paper

A Study of IDI 2-Stroke Cycle Compression Ignition Engine with DME

2009-11-03
2009-32-0063
DME is alternate fuel for diesel engines, however DME has defects such as small lower calorific value, inferior lubricity and weak fuel penetration. To compensate disadvantages, In-direct injection 2-stroke diesel engine with low pressure fuel injection system was proposed. The fuel injection timing near TDC gave good performance because the heat loss of low temperature oxidation reaction reduced. The brake torque and brake thermal efficiency of 2-stroke IDI diesel engine were lower than those of 4-stroke engine. However, the exhaust gas emissions were very low level because the intake air leaked through the exhaust port and the exhaust gas was diluted.
Journal Article

A Study of Ignition Characteristics of an HCCI Engine Operating on a Two-component Fuel

2010-09-28
2010-32-0098
The Homogenous Charge Compression Ignition (HCCI) engine is positioned as a next-generation internal combustion engine and has been the focus of extensive research in recent years to develop a practical system. One reason is that this new combustion system achieves lower fuel consumption and simultaneous reductions of nitrogen oxide (NOx) and particulate matter (PM) emissions, which are major issues of internal combustion engines today. However, the characteristics of HCCI combustion can prevent suitable engine operation owing to the rapid combustion process that occurs accompanied by a steep pressure rise when the amount of fuel injected is increased to obtain higher power output. A major issue of HCCI is to control this rapid combustion so that the quantity of fuel injected can be increased for greater power. Controlling the ignition timing is also an issue because it is substantially influenced by the chemical reactions of the fuel.
Technical Paper

A Study of Ignition and Combustion in an SI Engine Using Multistage Pulse Discharge Ignition

2017-11-05
2017-32-0069
Lean-burn technology is regarded as one effective way to increase the efficiency of internal combustion engines. However, stable ignition is difficult to ensure with a lean mixture. It is expected that this issue can be resolved by improving ignition performance as a result of increasing the amount of energy discharged into the gaseous mixture at the time of ignition. There are limits, however, to how high ignition energy can be increased from the standpoints of spark plug durability, energy consumption and other considerations. Therefore, the authors have focused on a multistage pulse discharge (MSPD) ignition system that performs low-energy ignition multiple times. In this study, a comparison was made of ignition performance between MSPD ignition and conventional spark ignition (SI). A high-speed camera was used to obtain visualized images of ignition in the cylinder and a pressure sensor was used to measure pressure histories in the combustion chamber.
Technical Paper

A Study of Knocking Using Ion Current and Light Emission

2003-09-16
2003-32-0038
This study attempted to elucidate combustion conditions in a progression from normal combustion to knocking by analyzing the ion current and light emission intensity that occurred during this transition. With the aim of understanding the combustion states involved, the ion current was measured at two positions in the combustion chamber. Light emission spectroscopy was applied to examine preflame reactions that are observed prior to autoignition in the combustion process of hydrocarbon fuels. The results obtained by analyzing the experimental data made clear the relationship between the ion current and light emission during the transition from normal combustion to knocking operation.
Technical Paper

A Study of Knocking in a Lean Mixture Using an Optically Accessible Engine

2016-11-08
2016-32-0002
Improving the thermal efficiency of internal combustion engines requires operation under a lean combustion regime and a higher compression ratio, which means that the causes of autoignition and pressure oscillations in this operating region must be made clear. However, there is limited knowledge of autoignition behavior under lean combustion conditions. Therefore, in this study, experiments were conducted in which the ignition timing and intake air temperature (scavenging temperature) of a 2-stroke optically accessible test engine were varied to induce autoignition under a variety of conditions. The test fuel used was a primary reference fuel with an octane rating of 90. The results revealed that advancing the ignition timing under lean combustion conditions also advanced the autoignition timing, though strong pressure oscillations on the other hand tended not to occur.
Journal Article

A Study of the Behavior of In-Cylinder Pressure Waves under HCCI Knocking by using an Optically Accessible Engine

2015-09-01
2015-01-1795
This study investigated the origin of knocking combustion accompanied by pressure wave and strong pressure oscillations in a Homogeneous Charge Compression Ignition (HCCI) engine. Experiments were conducted with a two-stroke single cylinder optically accessible engine that allowed the entire bore area to be visualized. The test fuel used was n-heptane. The equivalence ratio and intake temperature were varied to induce a transition from moderate HCCI combustion to extremely rapid HCCI combustion accompanied by in-cylinder pressure oscillations. Local autoignition and pressure wave behavior under each set of operating conditions were investigated in detail on the basis of high-speed in-cylinder visualization and in-cylinder pressure analysis. As a result, under conditions where strong knocking occurs, a brilliant flame originates from the burned gas side in the process where the locally occurring autoignition gradually spreads to multiple locations.
Technical Paper

A Study of the Factors Determining Knocking Intensity Based on High-Speed Observation of End-Gas Autoignition Using an Optically Accessible Engine

2018-10-30
2018-32-0003
The purpose of this study was to investigate how autoignition leads to the occurrence of pressure oscillations. That was done on the basis of in-cylinder visualization and analysis of flame images captured with a high-speed camera using an optically accessible engine, in-cylinder pressure measurement and measurement of light emission from formaldehyde (HCHO). The results revealed that knocking intensity tended to be stronger with a faster localized growth speed of autoignition. An investigation was also made of the effect of exhaust gas recirculation (EGR) as a means of reducing knocking intensity. The results showed that the application of EGR advanced the ignition timing, thereby reducing knocking intensity under the conditions where knocking occurred.
Technical Paper

A Study on the Knocking Characteristics of an SI-HCCI Engine by Using In-Cylinder Visualization

2016-11-08
2016-32-0005
In-cylinder visualization of the entire bore area at an identical frame rate was used to investigate knocking conditions under spark ignition (SI) combustion and under Homogeneous Charge Compression Ignition (HCCI) combustion in the same test engine. A frequency analysis was also conducted on the measured pressure signals. The results revealed that a combustion regime accompanied by strong pressure oscillations occurred in both the SI and HCCI modes, which was presumably caused by rapid autoignition with attendant brilliant light emission that took place near the cylinder wall. It was found that the knocking timing was the dominant factor of this combustion regime accompanied by cylinder pressure oscillations in both the SI and HCCI combustion modes.
Technical Paper

A Study on the Practical Application of Cellulosic Liquefaction Fuel for Diesel Engine

2015-11-17
2015-32-0801
In recent years, it has been expected the conversion of wasted biomass to industry available energy. In this study, 80 wt.% of wood and 20 wt.% of polypropylene were liquefied by the mineral oil used as solvent. The liquefied material was distilled, and distillation fraction of temperature from 493 to 573 K was recognized as light oil fraction CLF (Cellulose Liquefaction Fuel) and that from 378 to 493 K was recognized as naphtha fraction CLF. CLFs were blended with light oil and, in engine performance test, mixing ratio of light oil fraction CLF was 5 wt.%, and in vehicle running test, weight mixing ratios were 5 or 10 wt.%. In engine performance test, indicator diagrams and rate of heat releases of light oil fraction CLF 5 wt.% mixed light oil were almost equivalent to those of light oil in all load conditions, and engine performance and exhaust gas emissions were also almost equivalent to light oil.
Technical Paper

An Analysis of Conditions Producing Two-Stage Main Combustion Heat Release in a Supercharged HCCI Engine using a Gaseous Fuel Blend

2015-09-01
2015-01-1785
In this study, a detailed analysis was made of supercharged HCCI combustion using a two-component fuel blend of dimethyl ether (DME), which has attracted interest as a potential alternative fuel, and methane. The quantity of fuel injected and boost pressure were varied to investigate the equivalence ratio and operating region conducive to optimal HCCI combustion. The results revealed that varying the boost pressure according to the engine load and applying a suitable equivalence ratio induced two-stage main combustion over a wide load range, making it possible to avoid excessively rapid combustion.
Technical Paper

An Analysis of Light Emission Intensity Behavior Corresponding to Intermediate Products in Different Places of the Combustion Chamber

2001-12-01
2001-01-1882
Knocking is one phenomenon that can be cited as a factor impeding efforts to improve the efficiency of spark-ignition engines. With the aim of understanding knocking better, light emission spectroscopy was applied in this study to examine preflame reactions that can be observed prior to autoignition in the combustion reaction process of hydrocarbon fuels. Attention was focused on light emission behavior at wavelengths corresponding to those of formaldehyde (HCHO), Vaidya's hydrocarbon flame band (HCO) and the OH radical in a forced progression from normal combustion to a knocking state. Light emission behavior was measured simultaneously in the center and in the end zone of the combustion chamber when the engine was operated on two different test fuels. The test fuels used were n-heptane (0 RON) and a blended fuel (70 RON) consisting of n-heptane (0 RON) and iso-octane (100 RON).
Technical Paper

An Effect of Bio Diesel Fuel for Low Compression Ratio Diesel Engine

2017-11-05
2017-32-0088
The purpose of this study is to explore an effect of the coconut oil methyl ester (CME) and vegetable oil methyl ester (VME) on a low compression ratio diesel engine performance. CME and VME were produced from coconut oil and vegetable oil with methanol, respectively. Vegetable oil was assumed to contain 60 wt.% of soybean oil and 40 wt.% rapeseed oil. The engine performance was measured in the steady operating condition at 3600 rpm of engine speed. The ignition timings of CME and VME were advanced and the maximum cylinder pressures of CME and VME were higher as compared with the diesel fuel at low compression ratio, because CME and VME consisted of medium chain fatty acid methyl esters. The ignitability of CME was superior to VME, because CME consisted of saturated fatty acid. The brake thermal efficiency of diesel fuel was slightly higher than CME and VME at any compression ratios.
Technical Paper

An Effect of Cooled-EGR on Diesel Engine Performance Fueled with Coconut-oil Methyl Ester

2020-01-24
2019-32-0618
The purpose of this study is to explore an effect of cooled-EGR on the diesel engine performance fueled with coconut-oil methyl ester (CME). The exhaust gas was cooled by the water at room temperature and was fed to the intake manifold, and the EGR rate was changed from 0 % to 30 % at every 10 %. The engine performances were measured at several EGR rates, fuel injection pressures and timings. Test fuels were CME and commercial diesel fuel. In the case of high EGR rate at which the compression ignition was deteriorated, the ignition timing of CME was always earlier than that of diesel fuel, therefore CME had good ignitability as compared with diesel fuel under EGR application. When the fuel injection pressure was increased at high EGR rate, the ignition delay was improved by the fuel atomization and air-fuel mixing effect.
Journal Article

Analysis of Combustion Characteristics and Efficiency Improvement of a Supercharged HCCI Engine Achieved by Using the Different Ignition Characteristics of Gaseous Fuels

2012-10-23
2012-32-0075
This study focused on the use of a two-component fuel blend and supercharging as possible means of overcoming these issues of HCCI combustion. Low-carbon gaseous fuels with clean emissions were used as the test fuels. The specific fuels used were dimethyl ether (DME, cetane number of 55 or higher) that autoignites easily And exhibits pronounced low-temperature oxidation reactions, methane (cetane number of 0) that does not autoignite readily and is the main component of natural gas which is regarded as petroleum substitute, and propane (cetane number of 5) that is a principal component of liquefied petroleum gas. The results of previous investigations have shown that the use of a blended fuel of DME and methane produces a two-stage main combustion process under certain operating conditions, with the result that combustion is moderated.
Journal Article

Analysis of Interaction between Autoignition and Strong Pressure Wave Formation during Knock in a Supercharged SI Engine Based on High Speed Photography of the End Gas

2017-11-15
2017-32-0119
Engine knock is the one of the main issues to be addressed in developing high-efficiency spark-ignition (SI) engines. In order to improve the thermal efficiency of SI engines, it is necessary to develop effective means of suppressing knock. For that purpose, it is necessary to clarify the mechanism generating pressure waves in the end-gas region. This study examined the mechanism producing pressure waves in the end-gas autoignition process during SI engine knock by using an optically accessible engine. Occurrence of local autoignition and its development process to the generation of pressures waves were analyzed under several levels of knock intensity. The results made the following points clear. It was observed that end-gas autoignition seemingly progressed in a manner resembling propagation due to the temperature distribution that naturally formed in the combustion chamber. Stronger knock tended to occur as the apparent propagation speed of autoignition increased.
Technical Paper

Analysis of Intermediate Combustion Products in Preflame Reactions in a Spark-Ignition Engine

1997-10-27
978516
The use of a higher compression ratio is desirable for improving the thermal efficiency and specific power of spark-ignition engines, but it gives rise to a problem of engine knock. In the present research, an investigation was made of the role of the preflame reaction region of a spark-ignition engine in the occurrence of autoignition. Emission spectroscopy was used to measure the behavior of formaldehyde (HCHO) in a cool flame. In addition, measure the behavior of the faint light attributed to the HCO radical in a blue flame with the concurrent measurement of the OH radical. The emission waveforms measurements obtained for HCHO when n-heptane (ORON) was used as the fuel, It is thought that these tendencies correspond to the passage and degeneracy of a cool flame. Further, the emission waveforms measured for the HCO radical when blended fuels (6ORON, 8ORON) were correspond to that of a blue flame.
Technical Paper

Analysis of Knocking in an SI Engine based on In-cylinder: Spectroscopic Measurements and Visualization

2010-09-28
2010-32-0092
There are strong demands today to further improve the thermal efficiency of internal combustion engines against a backdrop of various environmental issues, including rising carbon dioxide (CO2) emissions and global warming. One factor that impedes efforts to improve the thermal efficiency of spark ignition engines is the occurrence of knocking. The aim of this study was to elucidate the details of knocking based on spectroscopic measurements and visualization of phenomena in the combustion chamber of a test engine that was operated on three primary reference fuels with different octane ratings (0 RON, 30 RON, and 50 RON). The ignition timing was retarded in the experiments to delay the progress of flame propagation, making it easier to capture the behavior of low-temperature oxidation reactions at the time knocking occurred.
X