Refine Your Search

Topic

Author

Search Results

Technical Paper

A Consideration of Vehicle's Door Shutting Performance

1981-02-01
810101
Many papers have mentioned, in passing, a phenomena that is known as “airtightness”, which is one factor that hinders automobile doors from closing. It also causes the eardrums of any passengers in the vehicle to be temporarily pressurized when the door is closed. However, few documents have considered this phenomena in detail. In this paper, we investigate the magnitude of “airtightness” as it affects ear pressure and examine its relationship to such factors as the volume of the passenger compartment, door's opening area and its inertial moment. Finally, we utilized estimation methods to predict its influence on the force required to close the door and the amount of the resultant air draft.
Technical Paper

A Lightweight, Multifunctional Plastic Reinforcement for Body Panels

1990-02-01
900292
A light weight,multifunctional plastic reinforcement has been developed for the outer body panels of vehicles. This new plastic reinforcement,composed mainly of polyvinylchloride resin, epoxy resin and an organic foaming agent, provides a 63% weight reduction over conventional plastic reinforcements, while adding the damping function to outer body panels. This paper introduces the process followed in developing the new plastic reinforcement and describes its characteristics. This new plastic reinforcement is already employed in the Nissan S-Cargo model, and it will be adopted in other passenger car models to be released in the near future.
Technical Paper

A Study of Car Body Structure to Reduce Environmental Burdens

2003-10-27
2003-01-2833
In the initial design stage, it is important to discuss what kind of body concept is effective from a viewpoint of environment burden reduction. This paper describes the importance of both weight reduction and recycling through conducting LCA (Life Cycle Assessment) for four kinds of body structures. In addition, using each software, DFMA (Design for Manufacture and Assembly), DFE (Design for Environment) and LCA to parts unit, each effectiveness was discussed through the assessment of the material-hybrid body.
Technical Paper

Aerodynamic Development of the Newly Developed Electric Vehicle

2011-05-17
2011-39-7230
This paper explains the specific measures taken to develop the body and underfloor of the newly developed Electric Vehicle for the purpose of reducing drag. Additionally, the headlamps and fenders were designed with innovative shapes to reduce wind noise that occurs near the outside mirrors. As a result of utilizing the aerodynamic advantages of an electric vehicle to maximum effect, The newly developed Electric Vehicle achieves a class-leading drag coefficient and interior quietness.
Technical Paper

Aerodynamics Development for a New EV Hatchback Considering Crosswind Sensitivity

2018-04-03
2018-01-0715
An electric vehicle (EV) has less powertrain energy loss than an internal combustion engine vehicle (ICE), so its aerodynamic accounts have a larger portion of drag contribution of the total energy loss. This means that EV aerodynamic performance has a larger impact on the all-electric range (AER). Therefore, the target set for the aerodynamics development for a new EV hatchback was to improving AER for the customer’s benefit. To achieve lower aerodynamic drag than the previous model’s good aerodynamic performance, an ideal airflow wake structure was initially defined for the new EV hatchback that has a flat underbody with no exhaust system. Several important parameters were specified and proper numerical values for the ideal airflow were defined for them. As a result, the new EV hatchback achieves a 4% reduction in drag coefficient (CD) from the previous model.
Technical Paper

An Automatic Sealing Robot System for Cars

1987-11-08
871258
Car rust has been a big problem. To improve the effectiveness of rustproofing, car materials and some methods are being developed. Sealing the seams of body panels is one important method. But the sealing operation is a difficult process and it is not easy to maintain quality standards for workmen and automatized systems. To overcome this problem, we developed an automatic robot sealing system with following features: 1. The system can be easily installed on an existing conveyor and follows the line conveyor in synchronization during sealing operation. 2. Small robots can cover wide area inside the vihecle. 3. New sealant supply controllers can regurate the supply rate in response to speed and motion of robots with a high accuracy. This system has already been installed in the Murayma plant and has proved successful in achieving a high quality sealing result.
Technical Paper

Analysis of Bumper Paint Removal and Development of Paint Removal Equipment

2000-03-06
2000-01-0740
This paper deals with the development of plastics recycling technology, which is one key to resolving environmental and natural resource problems and encouraging recycling activities. Bumpers are among the heaviest plastic auto parts, so the technology for recycling bumpers is strongly required. Paint remaining on bumpers causes the strength of the recycled material to decline and degrades its surface quality. Therefore, unless the paint is removed, it is impossible to use recycled material to manufacture new bumpers. This hampers recycling efforts and results in low-value recycled material. Consequently, it is essential to develop a simple paint removing without chemical substances for practical plastics recycling at low cost. Two topics are discussed in this paper. The first concerns the mechanism of paint removal and the development of a technique for utilizing that mechanism.
Technical Paper

Application of 980 MPa Grade Advanced High Strength Steel with High Formability

2018-04-03
2018-01-0625
There are strong demands for vehicle weight reductions so as to improve fuel economy. At the same time, it is also necessary to ensure crash safety. One effective measure for accomplishing such both requirements conflicting each other is to apply advanced high strength steel (AHSS) of 780 MPa grade or higher to the vehicle body. On the other hand, higher strength steels generally tend to display lower elongation causing formability deterioration. Nissan Motor Corporation have jointly developed with steel manufacturers a new 980 MPa grade AHSS with high formability with the aim of substituting it for the currently used 590 MPa grade high-tensile steel. Several application technologies have been developed through the verifications such as formability, resistance spot weldability, crashworthiness, and delayed fracture.
Technical Paper

Application of CAP to Analyze Mechanisms Producing Dummy Injury Readings under U.S. Side Impact Test Conditions

2011-04-12
2011-01-0014
Evaluations of dummy injury readings obtained in regulatory crash tests and new car assessment program tests provide indices for the development of crash safety performance in the process of developing new vehicles. Based on these indices, vehicle body structures and occupant restraint systems are designed to meet the required occupant injury criteria. There are many types of regulatory tests and new car assessment program tests that are conducted to evaluate vehicle safety performance in side impacts. Factoring all of the multiple test configurations into the development of new vehicles requires advanced design capabilities based on a good understanding of the mechanisms producing dummy injury readings. In recent years, advances in computer-aided engineering (CAE) tools and computer processing power have made it possible to run simulations of occupant restraint systems such as side airbags and seatbelts.
Technical Paper

Application of Prediction Formulas to Aerodynamic Drag Reduction of Door Mirrors

2015-04-14
2015-01-1528
It is considered that door mirror drag is composed of not only profile drag but also interference drag that is generated by the mixing of airflow streamlines between door mirrors and vehicle body. However, the generation mechanism of interference drag remained unexplained, so elucidating mechanism for countermeasures reducing drag have been needed. In this study, the prediction formulas for door mirror drag expressed by functions in relation to velocities around the vehicle body were derived and verified by wind tunnel test. The predicted values calculated by formulas were compared with the measured values and an excellent agreement was found. In summary, new prediction formulas made it possible to examine low drag mirror including profile and interference drag.
Technical Paper

Characteristics of a Coaxial Motor Driven by Compound Current

2005-10-24
2005-01-3755
This paper describes the magnetic circuit design of a coaxial AC motor system, comprising one stator and two rotors, and the test results obtained for a prototype motor. The rotors of the motor share the same stator core and coils, and each rotor uses its magnetic part as a yoke. Magnetic flux linkage of each rotor was determined in consideration of the maximum torque/power conditions and maximum motor speed. Finite Element Method were utilized to design a magnetic circuit for achieving the magnetic flux linkage specification. Tests conducted with a prototype motor showed that the torque characteristics can be divided into magnetic torque and reluctance torque, just like an ordinary IPM motor. Each torque level was improved through field-weakening control. The combined torque obtained when the two rotors were driven simultaneously approximately equaled the sum of the individual torques when the rotors were driven independently.
Technical Paper

DEVELOPMENT OF CRASH SAFETY OF THE NEWLY DEVELOPED ELECTRIC VEHICLE

2011-05-17
2011-39-7232
An electric vehicle (EV) is promising as clean energy powered vehicle, due to increased interest in fuel economy and environment in recent years. However, it requires to meet unique safety performance such as electric safety. Nissan has developed a new electric vehicle which achieves electric safety in addition to maintaining enough cruising distance and cabin space. This was achieved by I he development of an all-new platform for electric vehicles. The electric safety was enhanced by the protection of high-voltage components based on consideration of component layout and body structure, high-voltage shutdown by impact sensing system and prevention of short circuit by fuse in the battery. As an example of the protection of high-voltage components, the battery which locates under the floor was protected by elaborative packaging and multi-layer protection structure.
Technical Paper

Development of Door Guard Beams Utilizing Ultra High Strength Steel

1981-02-01
810031
Door guard beams have been developed through the utilization of ultra high strength steel (tensile strength>100 kg/mm2). At first, the sheet metal gauge was reduced in proportion to the strength of the ultra high strength without changing the shape of the beam section. This caused beam buckling and did not meet guard beam specifications. Analyzing this phenomena in accordance with the buckling theory of thin plates, a design criteria that makes effective use of the advantages of ultra high strength was developed. As a result, our newly designed small vehicle door guard beams are 20% lighter and 26% thinner than conventional ones. This makes it possible to reduce door thickness while increasing interior volume.
Technical Paper

Development of High Response Motor and Inverter System for the Nissan LEAF Electric Vehicle

2011-04-12
2011-01-0350
This paper describes the motor and inverter system developed for the Nissan LEAF that has been specifically designed as a mass-produced electric vehicle. The system produces maximum torque of 280 Nm and maximum power of 80 kW. The motor achieves a small size, high power, and high efficiency as a result of adopting the following in-house technologies. The magnetic circuit design was optimized for an interior magnet synchronous motor to attain the maximum performance figures noted here. The material technologies of the rotor and the stator facilitate high efficiency and the production technology achieves high density winding. The cooling mechanism is optimally designed for a mass-produced electric vehicle. The inverter incorporates the following original technologies and application-specific parts to obtain cost reductions combined with reliability improvements. The power module has an original structure with the power devices mounted directly on the busbars.
Technical Paper

Development of Nissan High Response Ceramic Turbocharger Rotor

1986-08-01
861128
Nissan utilizes ceramics in the turbine rotor of turbochargers to improve acceleration response by reducing the inertia weight of the turbine rotor. Since ceramic material does not yield, a high degree of localized stress will cause it to fail. Therefore, in order to be able to apply this brittle material to a high-speed rotor under high-stress conditions, silicon nitride material has been improved, and a low-stress shape employing the three-dimensional finite element method developed. Furthermore, a new technique for bonding the ceramic rotor to a metal shaft is employed in order to reduce residual stress caused by the difference in thermal expansion coefficients between the ceramic and metal materials. Since the strength of ceramics varies widely, it was necessary to confirm the reliability of the ceramic rotor and evaluate its life of fatigue. This paper, then, describes the design philosophy, bonding method, reliability and durability of the ceramic rotor.
Technical Paper

Development of Nissan Variable Geometry JET Turbocharger

1986-02-01
860105
Turbocharged engines exhibit poor transient response, especially when accelerating from low speeds at low loads, due to the inertia of the turbocharger rotating mechanism. In looking for ways to overcome this disadvantage, we investigated the possibilities of variable geometry turbochargers, and evaluated the performance characteristics of several types. We decided on the single flap type, and established a control method using compressor outlet pressure to control the flap and waste gate valves. Based on the results of experiments with this method, we developed an electronic pressure feedback system which greatly improves transient engine response and, at the same time, engine performance over a wide range of engine speeds.
Technical Paper

Development of Practical Heads-Up Display for Production Vehicle Application

1989-02-01
890559
THIS PAPER presents an advanced heads-up display which has been newly developed for use in 88 Nissan Silvia model. The HUD consists of a projector with a newly developed high brightness VFD and light-selective film used as a combiner which is coated on the windshield. This combination provides good display legibility even under bright sunlight. The display shows the vehicle speed in a three-digit reading at distance of more than one meter from the driver's eyes. The windshield-coated combiner conforms to U.S. safety standards concerning light transmittance, abrasion and other performance requirements. Experimental data are also presented which substantiate the HUD's high legibility and confirm its effect in enhancing the driver's attention toward the road ahead
Technical Paper

Development of Practical Multiplexed Wiring System

1988-02-01
880589
This paper describes a new approach to solving various problems inherent in conventional multiplexed wiring systems. These problems include the fact that the quantity of cut leads, which determines the cost, is not reduced even though the bulk of the wire harness is decreased. Another problem is that the communications system has a very complex configuration. With the approach proposed here it has been found that the number of cut leads can be reduced by housing the communications circuits individually in each piece of electrical equipment. This can be accomplished by grouping together the wiring in which the signals activating electrical load units all flow in the same direction. Custom LSI circuits have been developed to simplify the communications circuits. All of these developments have been combined into practical multiplexed wiring systems for controlling the power Windows, automatic door locks and power seats.
Technical Paper

Development of a Practical DSP Car Audio System

1992-02-01
920081
Digital signal processors (DSPs) are being used widely for sound field reproduction. However, it is difficult to apply a DSP to a car audio system because of the complicated acoustic characteristics of the passenger compartment. The authors have developed a new car audio system which employs special DSP software and a new speaker layout to provide excellent presence. The DSP has five output channels to generate stereophonic reflection from the front and rear speakers. The DSP software is programmed for each individual car model. A center speaker and A-pillar tweeters are used to produce a natural sound field in front through effective utilization of reflection from the windshield. This system is featured in 1992 Nissan models.
Technical Paper

Development of a Prediction Method for Passenger Vehicle Aerodynamic Lift using CFD

2008-04-14
2008-01-0801
Increasing expectations for stability at high speed call for the improvement of cars' aerodynamic performance, in particular lift reduction. However, due to styling constraints, traditional spoilers must be avoided and replaced by other solutions like underfloor components. Flow simulation is expected to be a useful tool for lift prediction, but the conventional models used so far did not represent complex geometry details such as the engine compartment and underfloor, and accuracy was insufficient. In the present study, a full vehicle simulation model, including the engine compartment and underfloor details, was used. Other improvements were also made such as optimization of the computational grid and the setting of boundary conditions for reproducing wind tunnel experiments or actual driving, making it possible to predict lift variations due to vehicle geometry changes.
X