Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Framework for Model Based Detection of Misfire in a Gasoline Engine with Dynamic Skip Fire

2019-04-02
2019-01-1288
A framework is proposed for model-based misfire detection in gasoline engines with dynamic skip fire by employing a novel control oriented engine model. The model-based techniques form compact description of plant behavior and have a number of well known benefits. The performance requirements and environment legislation resulted in a rigorous research on misfire detection due to which an extensive literature can be found for the problem of misfire detection in all-cylinder firing gasoline engines. Since there is no fix cylinder activation/de-activation sequence in dynamic skip fire engines. So, the problem of misfire detection in dynamic skip fire engines departs from its trivial nature. In the proposed framework, ‘cylinder skip sequence’ is also fed to the engine model along-with conventional engine inputs. The First Principle based Engine Model constructs the crankshaft angular speed fluctuation pattern for a given cylinder skip sequence.
Technical Paper

A Physically-Based, Lumped-Parameter Model of an Electrically-Heated Three-Way Catalytic Converter

2012-04-16
2012-01-1240
The impact of cold-start emissions is well known on conventional and hybrid electric vehicles. Plug-in electric vehicles offer a unique challenge in that there are opportunities for prolonged engine-off conditions which can lead to catalyst cooling and elevated emissions on engine re-start. This research investigates the development and validation of a system for controlling emissions under these conditions, with an emphasis on a catalytic converter model used for design and analysis. The model is a one-dimensional, lumped-parameter model of a three-way catalytic converter developed in Matlab/Simulink. The catalyst is divided into discrete, axial elements and each discrete element contains states for the temperatures of the gas, substrate, and can wall. Heat transfer mechanisms are modeled from physics-based equations.
Technical Paper

A Physics-Based, Control-Oriented Turbocharger Compressor Model for the Prediction of Pressure Ratio at the Limit of Stable Operations

2019-04-02
2019-01-0320
Downsizing and boosting is currently the principal solution to reduce fuel consumption in automotive engines without penalizing the power output. A key challenge for controlling the boost pressure during highly transient operations lies in avoiding to operate the turbocharger compressor in its instability region, also known as surge. While this phenomenon is well known by control engineers, it is still difficult to accurately predict during transient operations. For this reason, the scientific community has directed considerable efforts to understand the phenomena leading to the onset of unstable behavior, principally through experimental investigations or high-fidelity CFD simulations. On the other hand, less emphasis has been placed on creating control-oriented models that adopt a physics-based (rather than data-driven) approach to predict the onset of instability phenomena.
Technical Paper

A Safety and Security Testbed for Assured Autonomy in Vehicles

2020-04-14
2020-01-1291
Connectivity and autonomy in vehicles promise improved efficiency, safety and comfort. The increasing use of embedded systems and the cyber element bring with them many challenges regarding cyberattacks which can seriously compromise driver and passenger safety. Beyond penetration testing, assessment of the security vulnerabilities of a component must be done through the design phase of its life cycle. This paper describes the development of a benchtop testbed which allows for the assurance of safety and security of components with all capabilities from Model-in-loop to Software-in-loop to Hardware-in-loop testing. Environment simulation is obtained using the AV simulator, CARLA which provides realistic scenarios and sensor information such as Radar, Lidar etc. MATLAB runs the vehicle, powertrain and control models of the vehicle allowing for the implementation and testing of customized models and algorithms.
Technical Paper

A Simulation Tool for Virtual Validation and Verification of Advanced Driver Assistance Systems

2021-04-06
2021-01-0865
Due to the infeasibility of exhaustive on-road testing of Automated Vehicles (AVs) and vehicles with Advanced Driver Assistance Systems (ADAS), virtual methods for verification and validation of such vehicles have gained prominence. In order to incorporate the variability in the characteristics of test scenarios such as surrounding traffic, weather, obstacles, road network, infrastructure features, etc., as well as provide the option of varying the fidelities of subsystem models, this study discusses a modular software block-set for virtual testing of AV/ADAS controllers based on open source tools. The core concept is to co-simulate the traffic, vehicle dynamics, sensors, and the 3D scenes required for perception. This is achieved using SUMO (Simulation of Urban MObility, a microscopic road-network-based traffic generation tool) and Unreal Engine (for 3D traffic flow generation).
Technical Paper

A Unified, Scalable and Replicable Approach to Development, Implementation and HIL Evaluation of Autonomous Shuttles for Use in a Smart City

2019-04-02
2019-01-0493
As the technology in autonomous vehicle and smart city infrastructure is developing fast, the idea of smart city and automated driving has become a present and near future reality. Both Highway Chauffeur and low speed shuttle applications are tested recently in different research to test the feasibility of autonomous vehicles and automated driving. Based on examples available in the literature and the past experience of the authors, this paper proposes the use of a unified computing, sensing, communication and actuation architecture for connected and automated driving. It is postulated that this unified architecture will also lead to a scalable and replicable approach. Two vehicles representing a passenger car and a small electric shuttle for smart mobility in a smart city are chosen as the two examples for demonstrating scalability and replicability.
Technical Paper

Adaptation of TruckSim Models to Simulate Experimental Heavy Truck Hard Braking Test Data Under Various Levels of Brake Disablement

2010-10-05
2010-01-1920
This research focuses on the development and performance of analytical models to simulate a tractor-semitrailer in straight-ahead braking. The simulations were modified and tuned to simulate full-treadle braking with all brakes functioning correctly, as well as the behavior of the tractor-semitrailer rig under full braking with selected brakes disabled. The models were constructed in TruckSim and based on a tractor-semitrailer used in dry braking performance testing. The full-scale vehicle braking research was designed to define limits for engineering estimates on stopping distance when Class 8 air-braked vehicles experience partial degradation of the foundation brake system. In the full scale testing, stops were conducted from 30 mph and 60 mph, with the combination loaded to 80,000 lbs (gross combined weight or GCW), half payload, and with the tractor-semitrailer unladen (lightly loaded vehicle weight, or LLVW).
Technical Paper

An Approach to Model a Traffic Environment by Addressing Sparsity in Vehicle Count Data

2023-04-11
2023-01-0854
For realistic traffic modeling, real-world traffic calibration data is needed. These data include a representative road network, road users count by type, traffic lights information, infrastructure, etc. In most cases, this data is not readily available due to cost, time, and confidentiality constraints. Some open-source data are accessible and provide this information for specific geographical locations, however, it is often insufficient for realistic calibration. Moreover, the publicly available data may have errors, for example, the Open Street Maps (OSM) does not always correlate with physical roads. The scarcity, incompleteness, and inaccuracies of the data pose challenges to the realistic calibration of traffic models. Hence, in this study, we propose an approach based on spatial interpolation for addressing sparsity in vehicle count data that can augment existing data to make traffic model calibrations more accurate.
Journal Article

An Experimental Investigation of the Acoustic Performance of a High-Frequency Silencer for Turbocharger Compressors

2023-05-08
2023-01-1088
Conventional silencers have extensively been used to attenuate airborne pressure pulsations in the breathing system of internal combustion engines, typically at low frequencies as dictated by the crankshaft speed. With the introduction of turbocharger compressors, however, particularly those with the ported shroud recirculating casing treatment, high-frequency tones on the order of 10 kHz have become a significant contributor to noise in the induction system. The elevated frequencies promote multi-dimensional wave propagation, rendering traditional silencing design methods invalid, as well as the standard techniques to assess silencer performance. The present study features a novel high-frequency silencer designed to target blade-pass frequency (BPF) noise at the inlet of turbocharger compressors. The concept uses an acoustic straightener to promote planar wave propagation across arrays of quarter-wave resonators, achieving a broadband attenuation.
Journal Article

Analysis and Mathematical Modeling of Car-Following Behavior of Automated Vehicles for Safety Evaluation

2019-04-02
2019-01-0142
With the emergence of Driving Automation Systems (SAE levels 1-5), the necessity arises for methods of evaluating these systems. However, these systems are much more challenging to evaluate than traditional safety features (SAE level 0). This is because an understanding of the Driving Automation system’s response in all possible scenarios is desired, but prohibitive to comprehensively test. Hence, this paper attempts to evaluate one such system, by modeling its behavior. The model generated parameters not only allow for objective comparison between vehicles, but also provide a more complete understanding of the system. The model can also be used to extrapolate results by simulating other scenarios without the need for conducting more tests. In this paper, low speed automated driving (also known as Traffic Jam Assist (TJA)) is studied. This study focused on the longitudinal behavior of automated vehicles while following a lead vehicle (LV) in traffic jam scenarios.
Journal Article

Analysis of Motor Vibration Isolation System with Focus on Mount Resonances for Application to Electric Vehicles

2015-06-15
2015-01-2364
The vibration isolation effectiveness of powertrain mount configurations is examined for electric vehicle application by considering the effect introduced by internal mount resonances. Unlike internal combustion engines where mounts are typically designed only for static support and low frequency dynamics, electric motors have higher excitation frequencies in a range where mount resonances often occur. The problem is first analytically formulated by considering a simple 3-dimensional powertrain system, and the vibration isolation effectiveness significantly deteriorates at the mount resonance(s). It is shown that by modifying the mount shape, the mount resonance(s) can be shifted while maintaining the same static rate, tuning the frequency away from any engine excitation or natural frequencies. Further, internal mount resonances are utilized to improve vibration isolation over a narrow frequency range, using non-identical mounts to split mount resonance peaks.
Technical Paper

Application of Scaled Deflection Injury Criteria to Two Small, Fragile Females in Side Impact Motor Vehicle Crashes

2018-04-03
2018-01-0542
Thoracic injury criteria have been previously developed to predict thoracic injury for vehicle occupants as a function of biomechanical response. Historically, biomechanical testing of post-mortem human surrogates (PMHS) for injury criteria development has primarily been focused on mid-sized males. Response targets and injury criteria for other demographics, including small females, have been determined by scaling values from mid-sized males. The objective of this study was to explore the applicability of scaled injury criteria to their representative population. Two PMHS were subjected to a side-impact loading condition which replicates a near-side, MDB-to-vehicle impact for the driver. This was accomplished using the Advanced Side Impact System, or ASIS, on a HYGE sled. The sled acceleration matched the acceleration profile of an impacted vehicle, while the four pneumatic cylinders of the ASIS produced realistic door intrusion.
Technical Paper

Benchmarking Computational Time of Dynamic Programming for Autonomous Vehicle Powertrain Control

2020-04-14
2020-01-0968
Dynamic programming (DP) has been used for optimal control of hybrid powertrain and vehicle speed optimization particularly in design phase for over a couple of decades. With the advent of autonomous and connected vehicle technologies, automotive industry is getting closer to implementing predictive optimal control strategies in real time applications. The biggest challenge in implementation of optimal controls is the limitation on hardware which includes processor speed, IO speed, and random access memory. Due to the use of autonomous features, modern vehicles are equipped with better onboard computational resources. In this paper we present a comparison between multiple hardware options for dynamic programming. The optimal control problem considered, is the optimization of travel time and fuel economy by tuning the torque split ratio and vehicle speed while maintaining charge sustaining operation.
Technical Paper

Comparative Analysis of Protection Systems for DC Power Distribution in Electrified Vehicles

2022-03-29
2022-01-0135
Electric transportation has the potential of mitigating CO2 emissions and reduce fuel needs. One of the challenges for the growth of this industry is limited range and efficiency of the vehicles associated with battery storage systems and electric drive technology. High voltage systems are expected to increase efficiency and then vehicle mileage, however this increases the severity of the fault conditions, especially in case of short circuit. Melting fuse is commonly used for the purpose of protection in electrified vehicles, while it is effective and reliable, there are several shortcomings such as lack of precision, effect of ambient temperature, bulky, interruption time depending on the fault condition etc. Additionally, the on-board DC power distribution system (PDS) is characterized by low impedance, in this environment fuses are not able to limit the fault current leading to damage of electronics and hazard for the battery pack.
Technical Paper

Comparison of Intermediate-Combustion Products Formed in Engine with and without Ignition

1955-01-01
550262
RESULTS of tests performed on a modified type F-4 CFR engine show that precombustion reactions in both the fired and motored engine gave the same carbonyl products. The maximum specific yields of these carbonyls were similar for a given fuel compressed with comparable pressure-time-temperature histories in both motored- and fired-engine tests. As the motored engine seems to duplicate precombustion reactions occurring in a fired engine under normal operating conditions, the authors of this paper conclude that the motored engine, offering ease of control and sampling, is a convenient and valid tool for combustion research.
Technical Paper

Comparison of Numerical and System Dynamics Methods for Modeling Wave Propagation in the Intake Manifold of a Single-Cylinder Engine

2013-09-08
2013-24-0139
The automotive industry is striving to adopt model-based engine design and optimization procedures to reduce development time and costs. In this scenario, first-principles gas dynamic models predicting the mass, energy and momentum transport in the engine air path system with high accuracy and low computation effort are extremely important today for performance prediction, optimization and cylinder charge estimation and control. This paper presents a comparative study of two different modeling approaches to predict the one-dimensional unsteady compressible flow in the engine air path system. The first approach is based on a quasi-3D finite volume method, which relies on a geometrical reconstruction of the calculation domain using networks of zero-dimensional elements. The second approach is based on a model-order reduction procedure that projects the nonlinear hyperbolic partial differential equations describing the 1D unsteady flow in engine manifolds onto a predefined basis.
Technical Paper

Cooperative Adaptive Cruise Control Design and Implementation

2019-04-02
2019-01-0496
In this manuscript a design and implementation of CACC on an autonomous vehicle platform (2017 Ford Fusion) is presented. The developed CACC controls the intervehicle distance between the target vehicle and ego vehicle using a feedforward PD controller. In this design the feedforward information is the acceleration of the target vehicle which is communicated through Dedicated Short-Range Communication (DSRC) modem. The manuscript explains the detailed architecture of the designed CACC with used hardware and methods for the both simulation and experiments. Also, an approach to overcome detection failures at the curved roads is presented to improve overall quality of the designed CACC system. As a result, the initial simulation and experimental results with the designed CACC system is presented in the paper. The presented results indicate that CACC improves the car following performance of the ego vehicle as compared to the classical Adaptive Cruise Controller.
Technical Paper

Cooperative Collision Avoidance in a Connected Vehicle Environment

2019-04-02
2019-01-0488
Connected vehicle (CV) technology is among the most heavily researched areas in both the academia and industry. The vehicle to vehicle (V2V), vehicle to infrastructure (V2I) and vehicle to pedestrian (V2P) communication capabilities enable critical situational awareness. In some cases, these vehicle communication safety capabilities can overcome the shortcomings of other sensor safety capabilities because of external conditions such as 'No Line of Sight' (NLOS) or very harsh weather conditions. Connected vehicles will help cities and states reduce traffic congestion, improve fuel efficiency and improve the safety of the vehicles and pedestrians. On the road, cars will be able to communicate with one another, automatically transmitting data such as speed, position, and direction, and send alerts to each other if a crash seems imminent. The main focus of this paper is the implementation of Cooperative Collision Avoidance (CCA) for connected vehicles.
Journal Article

Crash Factor Analysis in Intersection-Related Crashes Using SHRP 2 Naturalistic Driving Study Data

2021-04-06
2021-01-0872
Intersections have a high risk of vehicle-to-vehicle conflicts because of the overlapping traffic flow from multiple roads. To understand the factors contributing to the crashes, this study examines the common characteristics in intersection-related crash and near- crash events, such as the existence of traffic control devices, the driver at fault, and occurrence of visual obstructions. The descriptive data of the crash and near-crash events recorded in the Second Strategic Highway Research Program Naturalistic Driving Study (SHRP 2 NDS) database is used in categorization and statistical analysis in this study. First, the events are divided into seven categories based on trajectories of the conflicting vehicles. The categorization provides the basis for in-depth analysis of crash-contributing factors in specific confliction patterns. Subsequently, descriptive statistics are used to portray each of the categories.
Technical Paper

Criticality Assessment of Simulation-Based AV/ADAS Test Scenarios

2022-03-29
2022-01-0070
Testing any new safety technology of Autonomous Vehicles (AV) and Advanced Driver Assistance Systems (ADAS) requires simulation-based validation and verification. The specific scenarios used for testing, outline incidences of accidents or near-miss events. In order to simulate these scenarios, specific values for all the above parameters are required including the ego vehicle model. The ‘criticality’ of a scenario is defined in terms of the difficulty level of the safety maneuver. A scenario could be over-critical, critical, or under-critical. In over-critical scenarios, it is impossible to avoid a crash whereas, for under-critical scenarios, no action may be required to avoid a crash. The criticality of the scenario depends on various parameters e.g. speeds, distances, road/tire parameters, etc. In this paper, we propose a definition of criticality metric and identify the parameters such that a scenario becomes critical.
X