Refine Your Search

Topic

Author

Search Results

Technical Paper

A Linear Thermal Model for an Automotive Clutch

2000-03-06
2000-01-0834
The paper presents a diaphragm spring clutch linear thermal model. The main model aim was to estimate the temperature on the clutch disc slipping surfaces. That objective was pursued through a linear model to overcome the memory and computing time problems required by models with a more complex structure. The model parameters were experimentally identified. The model was validated employing a test bench, considering shift transient different as far as energy dissipated, clutch disc wear, frequency of shifting, gearbox temperature. The model structure, the methodology adopted to identify the model parameters, the experimental results obtained are presented and discussed.
Technical Paper

A McPherson Lightweight Suspension Arm

2020-04-14
2020-01-0772
The paper deals with the design and manufacturing of a McPherson suspension arm made from short glass fiber reinforced polyamide (PA66). The design of the arm and the design of the molds have been made jointly. According to Industry 4.0 paradigms, a full digitalization of both the product and process has been performed. Since the mechanical behavior of the suspension arm strongly depends on constraints which are difficult to be modelled, a simpler structure with well-defined mechanical constraints has been developed. By means of such simple structure, the model for the behavior of the material has been validated. Since the suspension arm is a hybrid structure, the associated simple structure is hybrid as well, featuring a metal sheet with over-molded polymer. The issues referring to material flow, material to material contact, weld lines, fatigue strength, high and low temperature behavior, creep, dynamic strength have been investigated on the simple structure.
Technical Paper

A Methodology for Automotive Steel Wheel Life Assessment

2020-04-14
2020-01-1240
A methodology for an efficient failure prediction of automotive steel wheels during fatigue experimental tests is proposed. The strategy joins the CDTire simulative package effectiveness to a specific wheel finite element model in order to deeply monitor the stress distribution among the component to predict damage. The numerical model acts as a Software-in-the-loop and it is calibrated with experimental data. The developed tool, called VirtualWheel, can be applied for the optimisation of design reducing prototyping and experimental test costs in the development phase. In the first section, the failure criterion is selected. In the second one, the conversion of hardware test-rig into virtual model is described in detail by focusing on critical aspects of finite element modelling. In conclusion, failure prediction is compared with experimental test results.
Technical Paper

A New Test Bench for HWA Fluid-Dynamic Characterization of a Two-Valved In-Piston-Bowl Production Engine

1995-10-01
952467
A new test bench has been set up and equipped in order to analyze the air mean motion and turbulence quantities in the combustion system of an automotive diesel engine with one helicoidal intake duct and a conical type in-piston bowl. A sophisticated HWA technique employing single- and dual-sensor probes was applied to the in-cylinder flow investigation under motored conditions. The anemometric probe was also operated as a thermometric sensor. An analytical-numerical procedure, based on the heat balance equations for both anemometric and thermometric wires, was refined and applied to compute the gas velocity from the anemometer output signal. The gas property influence, the thermometric sensor lag and the prong temperature effects were taken into account with this procedure. The in-cylinder velocity data were reduced using both a cycle-resolved approach and the conventional ensemble-averaging procedure, in order to separate the mean flow from the fluctuating motion.
Technical Paper

A Proposal of an Oil Pan Optimization Methodology

2010-04-12
2010-01-0417
In the powertrain technology, designers must be careful on oil pan design in order to obtain the best noise, vibration and harshness (NVH) performance. This is a great issue for the automotive design because they affect the passengers' comfort. In order to reduce vibration and radiated noise in powertrain assembly, oil pan is one of the most critical components. The high stiffness of the oil pan permits to move up the natural modes of the component and, as a consequence, reduce the sound emission of the component itself. In addition, the optimized shape of the component allows the increase of natural frequency values of the engine assembly. The aim of this study is the development of a methodology to increase the oil pan stiffness starting from a sketch of the component and adding material where it is needed. The methodology is tested on a series of different models: they have the same geometry but different materials.
Technical Paper

A numerical Methodology for Induction Motor Control: Lookup Tables Generation and Steady-State Performance Analysis

2024-04-09
2024-01-2152
This paper presents a numerical methodology to generate lookup tables that provide d- and q-axis stator current references for the control of electric motors. The main novelty with respect to other literature references is the introduction of the iron power losses in the equivalent-circuit electric motor model implemented in the optimization routine. The lookup tables generation algorithm discretizes the motor operating domain and, given proper constraints on maximum stator current and magnetic flux, solves a numerical optimization problem for each possible operating point to determine the combination of d- and q- axis stator currents that minimizes the imposed objective function while generating the desired torque. To demonstrate the versatility of the proposed approach, two different variants of this numerical interpretation of the motor control problem are proposed: Maximum Torque Per Ampere and Minimum Electromagnetic Power Loss.
Technical Paper

Application of Genetic Algorithm for the Calibration of the Kinetic Scheme of a Diesel Oxidation Catalyst Model

2018-09-10
2018-01-1762
In this work, a methodology for building and calibrating the kinetic scheme for the 1D CFD model of a zone-coated automotive Diesel Oxidation Catalyst (DOC) by means of a Genetic Algorithm (GA) approach is presented. The methodology consists of a preliminary experimental activity followed by a modelling, optimization and validation process. The tested aftertreatment component presents zone coating, with the front brick side covered with Zeolites in order to ensure hydrocarbons trapping at low temperature, and Platinum Group Metal (PGM), while the rear brick side presents an alumina washcoat with a different PGM loading. Reactor scale samples representative of each coating zone were tested on a Synthetic Gas Bench (SGB), to fully characterize the component’s behavior in terms of Light-off and hydrocarbons (HC) storage for a wide range of inlet feed compositions and temperatures, representative of engine-out conditions.
Journal Article

Artificial Intelligence for Damage Detection in Automotive Composite Parts: A Use Case

2021-04-06
2021-01-0366
The detection and evaluation of damage in composite materials components is one of the main concerns for automotive engineers. It is acknowledged that defects appeared in the manufacturing stage or due to the impact and/or fatigue loads can develop along the vehicle riding. To avoid an unexpected failure of structural components, engineers ask for cheap methodologies assessing the health state of composite parts by means of continuous monitoring. Non Destructive Technique (NDT) for the damage assessment of composite structures are nowadays common and accurate, but an on-line monitoring requires properties as low cost, small size and low power that do not belong to common NDT. The presence of a damage in composite materials, either due to fatigue cycling or low-energy impact, leads to progressive degradation of elastic moduli and strengths.
Technical Paper

CFD Analysis of Fuel Cell Humidification System for Automotive Application

2023-04-11
2023-01-0493
Fuel cells are considered one of the promising technologies as possible replacement of Internal Combustion Engine (ICE) for the transportation sector due to their high efficiency, ultra-low (or zero) emissions and for the higher drive range. The Membrane Electrode Assembly (MEA) is what mainly influences the Fuel Cell FC performance, durability, and cost. In PEMFC the proton conductivity of the membrane is a function of the humidification level of the FC membrane, hence the importance of keeping the membrane properly humidified to achieve the best possible fuel cell performance. To have the optimal water content inside the fuel cell’s membrane several strategies could be adopted, dealing with the use of external device (such as membrane humidifier) or to adopt an optimal set of parameters (gas flow rate and temperature for example) to use the water produced at fuel cell cathode as humidity source. The aim of this paper is to study the behavior of a FC vehicle humidification system.
Technical Paper

Catalytic Activity of Nanostructured Ceria-Based Materials Prepared by Different Synthesis Conditions

2017-09-04
2017-24-0145
In this work, several nanostructured ceria-based catalysts were prepared by the hydrothermal technique varying two synthesis parameters (namely, temperature and pH). Then, cerias with different shapes (i.e., cubes, rods, combination of them, other polyhedra) and structural properties were obtained. The prepared materials were tested for the CO oxidation and soot oxidation efficiency. The results have shown that, for the CO oxidation, activities depend on the surface properties of the catalysts. Conversely, for the soot oxidation, the most effective catalysts exhibit better soot-catalyst contact conditions.
Technical Paper

City Vehicle XAM 2.0: Design and Optimization of the Composite Suspension System

2014-04-01
2014-01-1050
The use of composite materials is very important in automotive field to meet the European emission and consumption standards set for 2020. The most important challenge is to apply composite materials in structural applications not only in racing vehicles or supercars, but also in mass-production vehicles. In this paper is presented a real case study, that is the suspension wishbone arm (with convergence tie and pull-rod system) of the XAM 2.0 urban vehicle prototype, that it has the particular characteristics that of the front and rear, and left and right suspension system has the same geometry. The starting point has been an existing solution made in aluminum to manufacture a composite one.
Journal Article

Composite Control Arm Design: A Comprehensive Workflow

2021-04-06
2021-01-0364
This paper presents a complete overview of the computational design of an advanced suspension control arm constructed of composite material for light weighting purposes. The proposed methodology presented in detail is split into 3 phases. Phase 1 or Vehicle Performance Simulation, in which basic modelling and a sensibility study is performed to better understand the advantages of unsprung mass reduction (compared to sprung mass reduction) with respect to the vehicle’s vertical dynamics. It followed by the development and utilization of a multibody approach to evaluate the full-vehicle response to different dynamic maneuvers, such as harsh road imperfections, sine sweep steering, and double lane change tests. The impact of the improved suspension control arm is highlighted in detail, and the loads to which it is subjected are computed to serve as inputs for the successive phases.
Technical Paper

Delivery-Valve Effects on the Performance of an Automotive Diesel Fuel-Injection System

1999-03-01
1999-01-0914
An integrated theoretical and experimental investigation was carried out in order to evaluate the effects that the pump delivery-valve assembly can produce on the performance of a pump-line-nozzle fuel-injection system with a distributor-type pump for automotive diesel engines. Four distinct delivery valves, one constant-pressure valve, one reflux-hole and two relief-volume valves, were separately fitted to the pump and for each configuration of the delivery assembly the system behavior was analyzed under full-load steady-state operations in a wide pump angular-speed range. Fuel injection-rate as well as local pressure time-histories were investigated, paying specific attention to the occurrence and temporal evolution of cavitation phenomena in the pressure pipe and injector nozzle, after the valve closure. The flow across the delivery-valve assembly was theoretically examined in order to ascertain any instability sources as possible causes of cyclic fluctuations.
Technical Paper

Diagnostics of Mixing Process Dynamics, Combustion and Emissions in a Euro V Diesel Engine

2011-09-11
2011-24-0018
An innovative approach to the study of combustion and emission formation in modern diesel engines has been applied to a EURO V diesel engine equipped with an indirect-acting piezo injection system. The model is based on the joint use of a predictive non-stationary 1D spray model, which has recently been presented by Musculus and Kattke, and a diagnostic multizone thermodynamic model developed by the authors. The combustion chamber content has been split into homogeneous zones, to which mass and energy conservation laws have been applied: an unburned gas zone, made up of air, EGR and residual gas, several fuel/unburned gas mixture zones, premixed combustion burned gas zones and diffusive combustion burned gas zones. The 1D spray model enables the mixing process dynamics of the different fuel parcels with the unburned gas to be estimated for each injection pulse; therefore, the equivalent ratio time-history of each mixture zone can be estimated.
Technical Paper

Dynamic Characterization of Viscoelastic Materials

2004-11-16
2004-01-3304
In this study is analyzed the behavior of the viscoelastic materials used in DDS (double damping system) that transfer the torque from crankshaft to auxiliaries parts of the engine and the mathematic model it was done to validate the behavior of this materials. The comparative data, from the synthetic and natural rubber, it was done to analyze the behavior of these different materials, since as, their stiffness and damping characteristics.
Technical Paper

Efficient Procedure for Robust Optimal Design of Aerospace Laminated Structures

2017-09-19
2017-01-2058
Innovative aircraft design studies have noted that uncertainty effects could become significant and greatly emphasized during the conceptual design phases due to the scarcity of information about the new aero-structure being designed. The introduction of these effects in design methodologies are strongly recommended in order to perform a consistent evaluation of structural integrity. The benefit to run a Robust Optimization is the opportunity to take into account uncertainties inside the optimization process obtaining a set of robust solutions. A major drawback of performing Robust Multi-Objective Optimization is the computational time required. The proposed research focus on the reduction of the computational time using mathematic and computational techniques. In the paper, a generalized approach to operate a Robust Multi-Objective Optimization (RMOO) for Aerospace structure using MSC software Patran/Nastran to evaluate the Objectives Function, is proposed.
Journal Article

Experimental Characterization of Piezoelectric Transducers for Automotive Composite Structural Health Monitoring

2020-04-14
2020-01-0609
Composite materials are a natural choice for automotive applications where mechanical performance and lightweight are required. Nevertheless, attention should be directed to the defects into the material. This paper presents the building up of a Structural Health Monitoring system based on a piezoelectric transducers network: a continuous data system acquisition has been carried out in order to detect the presence of faults inside the analyzed structure. A piezoceramic patch has been coupled to a host structure in composite, to characterize the acquisition and the transmission of a wave signal on the material. The importance of this advanced technology research and the positive results obtained in the case study constitute the starting point for future application of piezoelectric-based Structural Health Monitoring systems over real industrial components.
Technical Paper

Experimental Investigation on Three Different Ceramic Substrate Materials for a Diesel Particulate Filter

2013-09-08
2013-24-0160
Three different ceramic substrate materials (Silicon Carbide, Cordierite and Aluminum Titanate) for a Diesel Particulate Filter (DPF) for a European passenger car diesel engine have been experimentally investigated in this work. The filters were soot loaded under real world operating conditions on the road and then regenerated in two different ways that simulate the urban driving conditions, which are the most severe for DPF regeneration, since the low exhaust flow has a limited capability to absorb the heat generated by the soot combustion. The tests showed higher temperature peaks, at the same soot loading, for Cordierite and Aluminum Titanate compared to the Silicon Carbide, thus leading to a lower soot mass limit, which in turn required for these components a higher regeneration frequency with draw backs in terms of fuel consumption and lube oil dilution.
Technical Paper

Experimental Methodologies To Determine Diaphragm Spring Clutch Characteristics

2000-03-06
2000-01-1151
The paper presents an experimental study to investigate the relationships among diaphragm spring clutch transmitted torque, thermal phenomena during clutch engagement and clutch wear. The work describes the development of a test bench presented by the Authors in a former paper. The original techniques were developed to measure the desired magnitudes and to develop the experimental methodology to investigate the relationships. The main results were obtained considering different operating conditions, dynamics of thermal phenomena and clutch wear.
Technical Paper

FEM and Experimental Analysis of Industrial Forming Processes

2001-10-01
2001-01-3218
This paper deals with implementing process simulation in the developing of the manufacturing process for automobile panels and body parts. Starting from FEM analysis of material behaviour, suggestions about punch and die design can be obtained bringing direct and indirect benefits to other routing steps, thus saving time and resources. In order to point out these relationship and enhance these benefits, some real cases are presented and analysed for which a comparison among simulated and experimental results is given, using both circle grid and thickness analysis of the deformed blank sheet. Suggestions for part design modifications have been obtained that lead to a net improvement in formability and quality.
X