Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Method for and Issues Associated with the Determination of Space Suit Joint Requirements

2009-07-12
2009-01-2537
In the design of a new space suit it is necessary to have requirements that define what mobility space suit joints should be capable of achieving in both a system and at the component level. NASA elected to divide mobility into its constituent parts -- range of motion (ROM) and torque -- in an effort to develop clean design requirements that limit subject performance bias and are easily verified. Unfortunately, the measurement of mobility can be difficult to obtain. Current technologies, such as the Vicon motion capture system, allow for the relatively easy benchmarking of range of motion (ROM) for a wide array of space suit systems. The ROM evaluations require subjects in the suit to accurately evaluate the ranges humans can achieve in the suit. However, when it comes to torque, there are significant challenges for both benchmarking current performance and writing requirements for future suits.
Technical Paper

A New Approach of Generating Travel Demands for Smart Transportation Systems Modeling

2020-04-14
2020-01-1047
The transportation sector is facing three revolutions: shared mobility, electrification, and autonomous driving. To inform decision making and guide smart transportation system development at the city-level, it is critical to model and evaluate how travelers will behave in these systems. Two key components in such models are (1) individual travel demands with high spatial and temporal resolutions, and (2) travelers’ sociodemographic information and trip purposes. These components impact one’s acceptance of autonomous vehicles, adoption of electric vehicles, and participation in shared mobility. Existing methods of travel demand generation either lack travelers’ demographics and trip purposes, or only generate trips at a zonal level. Higher resolution demand and sociodemographic data can enable analysis of trips’ shareability for car sharing and ride pooling and evaluation of electric vehicles’ charging needs.
Journal Article

A Numerical Investigation of Ignition of Ultra-Lean Premixed H2/Air Mixtures by Pre-Chamber Supersonic Hot Jet

2017-10-05
2017-01-9284
Gas engines often utilize a small-volume pre-chamber in which fuel is injected at near stoichiometric condition to produce a hot turbulent jet which then ignites the lean mixture in the main chamber. Hot jet ignition has several advantages over traditional spark ignition, e.g., more reliable ignition of extra-lean mixtures and more surface area for ignition resulting in faster burning and improved combustion burn time. Our previous experimental results show that supersonic jets could extend the lean flammability limit of fuel/air mixtures in the main chamber in comparison to subsonic jets. The present paper investigated the characteristics of supersonic hot jets generated by combustion of stoichiometric H2/air in a pre-chamber to understand the ignition mechanism of ultra-lean mixtures by supersonic hot jets.
Technical Paper

A Proposed Byzantine Fault-Tolerant Voting Architecture using Time-Triggered Ethernet

2017-09-19
2017-01-2111
Over the last couple decades, there has been a growing interest in incorporating commercial off-the-shelf (COTS) technologies and open standards in the design of human-rated spacecraft. This approach is intended to reduce development and upgrade costs, lower the need for new design work, eliminate reliance on individual suppliers, and minimize schedule risk. However, it has not traditionally been possible for COTS solutions to meet the high reliability and fault tolerance requirements of systems implementing critical spacecraft functions. Byzantine faults are considered particularly dangerous to such systems because of their ability to escape traditional means of fault containment and disrupt consensus between system components. In this paper, we discuss the design of a voting protocol using Time-Triggered Ethernet capable of achieving data integrity in the presence of a single Byzantine fault.
Technical Paper

A Study to Explore Locomotion Patterns in Partial Gravity Environments

1992-07-01
921157
The primary objectives of this study were to determine the factors that affect stability during locomotion in both lunar and martian gravity environments and to determine the criteria needed to enhance stability and traction. This study tested the effects of changing the speed of locomotion and the pattern of locomotion under three gravity conditions. The results showed that as the gravity level decreased, the amount of vertical and horizontal forces dropped significantly. The results also showed that there are some similarities across gravity levels with regard to changing the speed as well as the pattern of locomotion. In general, an increase in the speed resulted in an increase in the vertical and the horizontal forces. A change in the pattern of locomotion showed that even at reduced gravity, it will be more difficult to stop than compared to continue or start the motion.
Technical Paper

A Total Organic Carbon Analyzer for Space Potable Water Systems

1996-07-01
961570
A Total Organic Carbon (TOC) Analyzer has been developed for a Life Sciences Risk Mitigation Flight Experiment to be conducted on Spacehab and the Russian space station, Mir. Initial launch is scheduled for December 1996 (flight STS-81). The analyzer will be tested on the Orbiter in the Spacehab module, including when the Orbiter is docked at the Mir space station. The analyzer is scheduled to be launched again in May 1997 (STS-84) when it will be transferred to Mir. During both flights the analyzer will measure the quality of recycled and ground-supplied potable water on the space station. Samples will be archived for later return to the ground, where they will be analyzed for comparison to in-flight results. Water test samples of known composition, brought up with the analyzer, also will be used to test its performance in microgravity. Ground-based analyses of duplicates of those test samples will be conducted concurrently with the in-flight analyses.
Journal Article

A Transfer-Matrix-Based Approach to Predicting Acoustic Properties of a Layered System in a General, Efficient, and Stable Way

2023-05-08
2023-01-1052
Layered materials are one of the most commonly used acoustical treatments in the automotive industry, and have gained increased attention, especially owing to the popularity of electric vehicles. Here, a method to model and couple layered systems with various layer types (i.e., poro-elastic layers, solid-elastic layers, stiff panels, and fluid layers) is derived that makes it possible to stably predict their acoustical properties. In contrast with most existing methods, in which an equation system is constructed for the whole structure, the present method involves only the topmost layer and its boundary conditions at two interfaces at a time, which are further simplified into an equivalent interface. As a result, for a multi-layered system, the proposed method splits a complicated system into several smaller systems and so becomes computationally less expensive.
Technical Paper

ARPCS2AT2: A Tool for Atmospheric Pressure and Composition Control Analysis

2003-07-07
2003-01-2437
A generalized computer program for analysis of pressure and composition in multiple volume systems has been under development by the National Aeronautics and Space Administration (NASA) since 1976. This paper describes the most recent developments in the program. These improvements include the expansion of the program to nine volumes, improvements to the model of the International Space Station (ISS) carbon dioxide removal system, and addition of a detailed Sabatier carbon dioxide reduction mode. An evaluation of the feasibility of adding of trace contaminant tracking was also performed. This paper will also present the results of an analysis that compares model predictions with ISS flight data for carbon dioxide (CO2) maintenance.
Technical Paper

Access Systems for Partial Gravity Exploration & Rescue: Results from Prototype Testing in an Analog Environment

2007-07-09
2007-01-3033
An EVA simulation with a medical contingency scenario was conducted in 2006 with the NASA Haughton-Mars and EVA Physiology System and Performance Projects, to develop medical contingency management and evacuation techniques for planetary surface exploration. A rescue/evacuation system to allow two rescuer astronauts to evacuate one incapacitated astronaut was evaluated. The rescue system was utilized effectively to extract an injured astronaut up a slope of15-25° and into a surface mobility rover for transport to a simulated habitat for advanced medical care. Further research is recommended to evaluate the effects of reduced gravity and to develop synergies with other surface systems for carrying out the contingency procedures.
Technical Paper

Active Collision Avoidance System for E-Scooters in Pedestrian Environment

2024-04-09
2024-01-2555
In the dense fabric of urban areas, electric scooters have rapidly become a preferred mode of transportation. As they cater to modern mobility demands, they present significant safety challenges, especially when interacting with pedestrians. In general, e-scooters are suggested to be ridden in bike lanes/sidewalks or share the road with cars at the maximum speed of about 15-20 mph, which is more flexible and much faster than pedestrians and bicyclists. Accurate prediction of pedestrian movement, coupled with assistant motion control of scooters, is essential in minimizing collision risks and seamlessly integrating scooters in areas dense with pedestrians. Addressing these safety concerns, our research introduces a novel e-Scooter collision avoidance system (eCAS) with a method for predicting pedestrian trajectories, employing an advanced Long short-term memory (LSTM) network integrated with a state refinement module.
Technical Paper

Advanced Inflatable Airlock System for EVA

2002-07-15
2002-01-2314
The Advanced Inflatable Airlock (AIA) System is currently being developed for the 2nd Generation Reusable Launch Vehicle (RLV). The objective of the AIA System is to greatly reduce the cost associated with performing extravehicular activity (EVA) from the RLV by reducing launch weight and volume from previous hard airlock systems such as the Space Shuttle and Space Station airlocks. The AIA System builds upon previous technology from the TransHab inflatable structures project, from Space Shuttle and Space Station Airlock systems, and from terrestrial flexible structures projects. The AIA system design is required to be versatile and capable of modification to fit any platform or vehicle needing EVA capability. This paper discusses the AIA conceptual design and key features that will help meet the 2nd Generation RLV program goals of reduced cost and program risk.
Technical Paper

Advanced Regenerable CoD2 Removal Technologies Applicable to Future Emus

1996-07-01
961484
The NASA Shuttle Extravehicular Mobility Unit (EMU) uses a non-regenerable absorbent to remove CO2 from an astronaut's breathing loop. A savings in launch weight, storage volume and life cycle cost may be achieved by incorporating a regenerable CO2 removal system into the EMU. This paper will discuss regenerable CO2 sorbents and their impact on the life support system of an EMU. The systems evaluated will be judged on their technical maturity, impact to the EMU, and impacts to space station and shuttle operation
Technical Paper

An Advanced Carbon Reactor Subsystem for Carbon Dioxide Reduction

1986-07-14
860995
Reduction of metabolic carbon dioxide is one of the essential steps in physiochemical air revitalization for long-duration manned space missions. Under contract with NASA Johnson Space Center, Hamilton Standard is developing an Advanced Carbon Reactor Subsystem (ACRS) to produce water and dense solid carbon from carbon dioxide and hydrogen. The ACRS essentially consists of a Sabatier Methanation Reactor (SMR) to reduce carbon dioxide with hydrogen to methane and water, a gas-liquid separator to remove product water from the methane, and a Carbon Formation Reactor (CFR) to pyrolyze methane to carbon and hydrogen. The hydrogen is recycled to the SMR, while the produce carbon is periodically removed from the CFR. The SMR is well-developed, while the CFR is under development. In this paper, the fundamentals of the SMR and CFR processes are presented and results of Breadboard CFR testing are reported.
Technical Paper

An Automated State Model Generation Algorithm for Simulation/Analysis of Power Systems with Power Electronic Components

1998-04-21
981256
In this paper, a recently-developed algorithmic method of deriving the state equations of power systems containing power electronic components is described. Therein the system is described by the pertinent branch parameters and the circuit topology; however, unlike circuit-based algorithms, the difference equations are not implemented at the branch level. Instead, the composite system state equations are established. A demonstration of the computer implementation of this algorithm to model a variable-speed, constant-frequency aircraft generation system is described. Because of the large number of states and complexity of the system, particular attention is placed on the development of a model structure which provides optimal simulation efficiency.
Technical Paper

An Environmental Sensor Technology Selection Process for Exploration

2005-07-11
2005-01-2872
In planning for Exploration missions and developing the required suite of environmental monitors, the difficulty lies in down-selecting a multitude of technology options to a few candidates with exceptional potential. Technology selection criteria include conventional analytical parameters (e.g., range, sensitivity, selectivity), operational factors (degree of automation, portability, required level of crew training, maintenance), logistical factors (size, mass, power, consumables, waste generation) and engineering factors such as complexity and reliability. Other more subtle considerations include crew interfaces, data readout and degree of autonomy from the ground control center. We anticipate that technology demonstrations designed toward these goals will be carried out on the International Space Station, the end result of which is a suite of techniques well positioned for deployment during Exploration missions.
Technical Paper

Analysis and Design of Crew Sleep Station for ISS

2002-07-15
2002-01-2303
This paper details the analysis and design of the Temporary Sleep Station (TeSS) environmental control system for International Space Station (ISS). The TeSS will provide crewmembers with a private and personal space, to accommodate sleeping, donning and doffing of clothing, personal communication and performance of recreational activities. The need for privacy to accommodate these activities requires adequate ventilation inside the TeSS. This study considers whether temperature, carbon dioxide, and humidity remain within crew comfort and safety levels for various expected operating scenarios. Evaluation of these scenarios required the use and integration of various simulation codes. An approach was adapted for this study, whereby results from a particular code were integrated with other codes when necessary.
Technical Paper

Analysis and Simulation of a UAV Power System

2002-10-29
2002-01-3175
Models for the components of a long-duration UAV power system are set forth. The models include the solar array, solar array power converter, fuel cell and electrolyzer system and corresponding power converter, and propulsion load. Based on these models, a power management control is derived, which when coupled with the component models, are used to simulate power system performance during start-up, through a day-night cycle, and through a solar eclipse.
Technical Paper

Analysis of the Effect of Age on Shuttle Orbiter Lithium Hydroxide Canister Performance

2005-07-11
2005-01-2768
Recent efforts have been pursued to establish the usefulness of Space Shuttle Orbiter lithium hydroxide (LiOH) canisters beyond their certified two-year shelf life, at which time they are currently considered “expired.” A stockpile of Orbiter LiOH canisters are stowed on the International Space Station (ISS) as a backup system for maintaining ISS carbon dioxide Canisters with older (CO2) control. Canister with older pack dates must routinely be replaced with newly packed canisters off-loaded from the Orbiter Middeck. Since conservation of upmass is critical for every mission, the minimization of canister swap-out rate is paramount. LiOH samples from canisters with expired dates that had been returned from the ISS were tested for CO2 removal performance at the NASA Johnson Space Center (JSC) Crew and Thermal Systems Division (CTSD). Through this test series and subsequent analysis, performance degradation was established.
Journal Article

Assessment of Large-Eddy Simulations of Turbulent Round Jets Using Low-Order Numerical Schemes

2017-03-28
2017-01-0575
The basic idea behind large-eddy simulation (LES) is to accurately resolve the large energy-containing scales and to use subgrid-scale (SGS) models for the smaller scales. The accuracy of LES can be significantly impacted by the numerical discretization schemes and the choice of the SGS model. This work investigates the accuracy of low-order LES codes in the simulation of a turbulent round jet which is representative of fuel jets in engines. The turbulent jet studied is isothermal with a Reynolds number of 6800. It is simulated using Converge, which is second-order accurate in space and first-order in time, and FLEDS, developed at Purdue University, which is sixth-order accurate in space and fourth-order in time. The high-order code requires the resolution of acoustic time-scales and hence is approximately 10 times more expensive than the low-order code.
Technical Paper

Assessment of Technology Readiness Level of a Carbon Dioxide Reduction Assembly (CRA) for Use on International Space Station

2004-07-19
2004-01-2446
When technologies are traded for incorporation into vehicle systems to support a specific mission scenario, they are often assessed in terms of “Technology Readiness Level” (TRL). TRL is based on three major categories of Core Technology Components, Ancillary Hardware and System Maturity, and Control and Control Integration. This paper describes the Technology Readiness Level assessment of the Carbon Dioxide Reduction Assembly (CRA) for use on the International Space Station. A team comprising of the NASA Johnson Space Center, Marshall Space Flight Center, Southwest Research Institute and Hamilton Sundstrand Space Systems International have been working on various aspects of the CRA to bring its TRL from 4/5 up to 6. This paper describes the work currently being done in the three major categories. Specific details are given on technology development of the Core Technology Components including the reactor, phase separator and CO2 compressor.
X