Refine Your Search

Topic

Search Results

Technical Paper

A Thermodynamic Study on Boosted HCCI: Experimental Results

2011-04-12
2011-01-0905
Stricter emissions legislation and growing demands for lower fuel consumption require significant efforts to improve combustion efficiency while satisfying the emission quality demands. Controlled Homogeneous Charge Compression Ignition (HCCI) combined with boosted air systems on gasoline engines provides a particularly promising, yet challenging, approach. Naturally aspirated (NA) HCCI has already shown considerable potential in combustion efficiency gains. Nevertheless, since the volumetric efficiency is limited in the NA HCCI operation range due to the hot residuals required to ignite the mixture and slow down reaction kinetics, only part-load operation is feasible in this combustion mode. Considering the future gasoline engine market with growing potentials identified in downsized gasoline engines, it becomes necessary to investigate the synergies and challenges of controlled, boosted HCCI.
Journal Article

A Thermodynamic Study on Boosted HCCI: Motivation, Analysis and Potential

2010-04-12
2010-01-1082
Due to the increasingly stricter emission legislation and growing demands for lower fuel consumption, there have been significant efforts to improve combustion efficiency while satisfying the emission requirements. Homogeneous Charge Compression Ignition (HCCI) combined with turbo/supercharging on gasoline engines provides a particularly promising and, at the same time, a challenging approach. Naturally aspirated (n.a.) HCCI has already shown a considerable potential of about 14% in the New European Driving Cycle (NEDC) compared with a conventional 4-cylinder 2.0 liter gasoline Port Fuel Injection (PFI) engine without any advanced valve-train technology. The HCCI n.a. operation range is air breathing limited due to the hot residuals required for the self-ignition and to slow down reaction kinetics, and therefore is limited to a part-load operation area.
Journal Article

Advanced Combustion System Analyses on a 125cc Motorcycle Engine

2011-11-08
2011-32-0557
Environmental consciousness and tightening emissions legislation push the market share of electronic fuel injection within a dynamically growing world wide small engines market. Similar to automotive engines during late 1980's, this opens up opportunities for original equipment manufacturers (OEM) and suppliers to jointly advance small engines performance in terms of fuel economy, emissions, and drivability. In this context, advanced combustion system analyses from automotive engine testing have been applied to a typical production motorcycle small engine. The 125cc 4-stroke, 2-valve, air-cooled, single-cylinder engine with closed-loop lambda-controlled electronic port fuel injection was investigated in original series configuration on an engine dynamometer. The test cycle fuel consumption simulation provides reasonable best case fuel economy estimates based on stationary map fuel consumption measurements.
Technical Paper

Advanced Emission and Fuel Economy Concept Using Combined Injection of Gasoline and Hydrogen in SI-Engines

2004-03-08
2004-01-1270
In order to meet future requirements for emission reduction and fuel economy a variety of concepts are available for gasoline engines. In the recent past new pathways have been found using alternative fuels and fuel combinations to establish cost optimized solutions. The presented concept for a SI-engine consists of combined injection of gasoline and hydrogen. A hydrogen enriched gas mixture is being injected additionally to gasoline into the engine manifold. The gas composition represents the output of an onboard gasoline reformer. The simulations and measurements show substantial benefits to improve the combustion process resulting in reduced cold start and warm up emissions and optimized part load operation. The replacement of gasoline by hydrogen-rich gas during engine start leads to zero hydrocarbons in the exhaust gas.
Technical Paper

Analysis of the Combustion Mode Switch Between SI and Gasoline HCCI

2012-04-16
2012-01-1105
The worldwide stricter emission legislation and growing demands for lower fuel consumption require for significant efforts to improve combustion efficiency while satisfying the emission quality demands. Homogeneous Charge Compression Ignition (HCCI) on gasoline engines provides a particularly promising and, at the same time, challenging approach, especially regarding the combustion mode switch between spark-ignited (SI) and gasoline HCCI mode and vice-versa. Naturally aspirated (n.a.) HCCI shows considerable potential, but the operation range is air breathing limited due to hot residuals required for auto-ignition and to slow down reaction kinetics. Therefore it is limited to part-load operation. Considering the future gasoline engine market with growing potentials identified on downsized gasoline engines, it is imperative to investigate the synergies and challenges of boosted HCCI.
Journal Article

Development of the Combustion System for General Motors' 3.6L DOHC 4V V6 Engine with Direct Injection

2008-04-14
2008-01-0132
General Motors' 3.6L DOHC 4V V6 engine has been upgraded to provide substantial improvements in performance, fuel economy, and emissions for the 2008 model year Cadillac CTS and STS. The fundamental change was a switch from traditional manifold-port fuel injection (MPFI) to spark ignition direct injection (SIDI). Additional modifications include enhanced cylinder head and intake manifold air flow capacities, optimized camshaft profiles, and increased compression ratio. The SIDI fuel system presented the greatest opportunities for system development and optimization in order to maximize improvements in performance, fuel economy, and emissions. In particular, the injector flow rate, orifice geometry, and spray pattern were selected to provide the optimum balance of high power and torque, low fuel consumption, stable combustion, low smoke emissions, and robust tolerance to injector plugging.
Technical Paper

Electronic Throttle Control (ETC): A Cost Effective System for improved Emissions, Fuel Economy, and Driveability

1996-02-01
960338
This paper shows that the functional integration of Electronic Throttle Control (ETC) into the engine control strategy allows improvements of emissions and fuel economy without making compromises in respect of driveability. A cost effective way for realizing ETC is the integration of the control electronics into the engine control unit (ECU). The paper describes the consequences of such an integration for the ECU hardware and software. Special attention is given to the ETC related safety aspects. Another chapter discusses different technologies for the throttle actuator drive. This is followed by a brief description of a suitable control strategy for a throttle actuator. Finally the paper gives also an overview about current status and development trends of accelerator pedal sensors necessary for ETC.
Technical Paper

Energy Management - A Key Approach to Design The System Structure of Powertrain Control: Technology Leadership Brief

2012-10-08
2012-01-9007
The electrification of the powertrain, the diversity and the complexity of the more or less individual technical solutions which are preferred by different car manufacturers, create a steadily increasing challenge for the whole automotive industry. Missing standards and sales volumes still below the market expectations on the one hand, and the increasing interaction of the main powertrain domains (engine, transmission, e-drive) caused by upcoming cross domain functions on the other hand, lead to increasing development costs and non-optimal solutions concerning fuel economy improvement. Within the domain of engine management systems Bosch established in the mid-nineties the so called torque structure as the solution to a similar situation addressing the coordination of air management, fuel injection and ignition.
Technical Paper

Experimental and Numerical Comparison of Fuel Economy for 125cc Motorcycles with Carburetor or Electronic Port Fuel Injection Based on Different Drive Cycles

2012-10-23
2012-32-0067
Based on the fuel consumption analysis methods published on last year's SETC [1], we compared fuel economies of a typical 125cc production motorcycle equipped with either electronic (port) fuel injection (EFI/PFI) engine management system (EMS) or constant vacuum carburetor (Carb). In addition to earlier discussed PFI results, stationary engine map measurements of fuel consumption on an engine dynamometer (dyno) were conducted for the Carb engine. The powerful development tool of fuel consumption test cycle simulation uses these stationary engine dyno results to calculate fuel consumption of real transient vehicle operation. Here it was employed to assess economy of both fuel system configurations under different driving conditions. Besides the Indian Driving Cycle (IDC) and the World Motorcycle Test Cycle (WMTC), we investigated real world drive patterns typical for emerging markets in terms of a Bangalore urban cycle and a Malaysian suburban cycle.
Journal Article

Fuel-Independent Particulate Emissions in an SIDI Engine

2015-04-14
2015-01-1081
The fuel-independent particulate emissions of a direct injection gasoline engine were investigated. This was done by running the engine with reference gasoline at four different loads and then switching to hydrogen or methane port fuel operation and comparing the resulting particulate emissions and their size distribution. Differences in the combustion characteristics of hydrogen and gasoline were accounted for by diluting the inlet air with nitrogen and matching the pressure or heat release traces to those of gasoline operation. Methane operation is expected to generate particulate emissions lower by several orders of magnitude compared to gasoline and hydrogen does not contribute to carbon soot formation because of the lack of carbon atoms in the molecule. Thus, any remaining particulate emissions at hydrogen gas operation must arise from non fuel related sources, e.g. from lubrication oil, metal abrasion or inlet air.
Journal Article

Investigation on the Transient Behavior of a High Compression Two-Wheeler Single Cylinder Engine Close to Idling

2017-01-10
2017-26-0330
The introduction of stricter emission legislation and the demand of increased power for small two-wheelers lead to an increase of technical requirements. Especially the introduction of liquid-cooling over air-cooling allows the introduction of higher compression ratios, which improves power output as well as thermodynamic efficiencies and thereby fuel consumption. But an increase in compression ratio also introduces further challenges during transient behavior especially close to idling. In order to keep the two-wheeler specific responsiveness of the vehicle, the overall rotational inertia of the engine must be kept low. But the combination of low inertia and high compression ratio can lead to a stalling of the engine if the throttle is opened and closed very quickly in idle operation. The fast opening and closing of the throttle is called a throttle blip.
Technical Paper

Investigation on the Transient Behavior of a Two-Wheeler Single Cylinder Engine Close to Idling with Electronic Throttle Control

2018-10-30
2018-32-0074
The introduction of new emission legislation and the demand of increased power for small two-wheelers lead to an increase of technical requirements. Especially for single cylinder engines with high compression ratio the transient behavior close to idling is challenging. The demand for two-wheeler specific responsiveness of the vehicle requires low overall rotational inertia as well as small intake manifold volumes. The combination with high compression ratio can lead to a stalling of the engine if the throttle opens and closes very quickly in idle operation. The fast opening and closing of the throttle is called a throttle blip. Fast, in this context, means that the blipping event can occur in one to two working cycles. Previous work was focused on the development of a procedure to apply reproducible blipping events to a vehicle in order to derive a deeper physical understanding of the stalling events.
Technical Paper

Knock Control on Small Four-Two-Wheeler Engines

2012-10-23
2012-32-0052
Today, knock control is part of standard automotive engine management systems. The structure-borne noise of the knock sensor signal is evaluated in the electronic control unit (ECU). In case of knocking combustions the ignition angle is first retarded and then subsequently advanced again. The small-sized combustion chamber of small two-wheeler engines, uncritical compression ratios and strong enrichment decrease the knock tendency. Nevertheless, knock control can effectuate higher performance, lower fuel consumption, compliance with lower legally demanded emission limits, and the possibility of using different fuel qualities. The Knock-Intensity-Detector 2 (KID2) and the Bosch knock control tool chain, based on many years of experience gained on automotive engines, provides an efficient calibration method that can also be used for two-wheeler engines. The raw signal of the structure-borne noise is used for signal analysis and simulation of different filter settings.
Technical Paper

Low Cost Battery Sensor Algorithm

2011-10-06
2011-28-0021
With the development of start stop technology to improve fuel economy and to reduce carbon dioxide (CO2) emissions, the information of State of Charge (SOC) of the battery is highly desirable. Recent days the battery sensors are used in mid-segment and luxury automobiles that monitors the current, voltage and temperature of the battery and calculates the charge model and sends the information via CAN or LIN. These dedicated sensors are intended to perform various functions other than basic start stop. Hence these sensors are proven to be expensive for emerging market, which is intended to perform only basic start stop as the market is looking for a low cost solution. Bosch- India has developed and implemented a novel idea of bringing a low cost and reliable battery charge detection algorithm that can be realized within the Electronic Control Unit (ECU) without a dedicated sensor.
Technical Paper

Mixture Formation in a CNG-DI Engine in Stratified Operation

2015-09-06
2015-24-2474
In a study using a single-cylinder engine a significant potential in fuel efficiency and emission reduction was found for stratified operation of a high pressure natural gas direct injection (DI) spark ignition (SI) engine. The control of the mixture formation process appeared to be critical to ensure stable inflammation of the mixture. Therefore, optical investigations of the mixture formation were performed on a geometric equivalent, optically accessible single-cylinder engine to investigate the correlation of mixture formation and inflammability. The two optical measurement techniques infrared (IR) absorption and laser-induced fluorescence (LIF) were employed. Mid-wavelength IR absorption appeared to be qualified for a global visualization of natural gas injection; LIF allows to quantify the equivalence ratio inside a detection level. While LIF measurements require complex equipment, the IR setup consists merely of a black body heater and a mid-wavelength sensitive IR camera.
Technical Paper

New Approaches to Electronic Throttle Control

1991-02-01
910085
An electronic control of throttle angle is required for safety systems like traction control (ASR) and for advanced engine management systems with regard to further improvements of driving comfort and fuel economy. For applications, in which only ASR is required, two versions of a new traction control actuator (TCA) have been developed. Their function is based on controlling the effective length of the bowden cable between the accelerator pedal and the throttle. Besides retaining the mechanical linkage to the throttle, the concept has no need for a pedal position sensor, which is necessary for a drive-by-wire system. Design and performance of both actuators are described and their individual advantages are compared. Moreover, the communication of the system with ASR and its behaviour with regard to vehicle dynamics are illustrated.
Technical Paper

New Electronic Systems Worldwide - The Supplier's View

1986-11-01
861972
Despite the tough environmental conditions facing electronic systems in commercial vehicles, electronics is gaining ground also in these applications. In the drive sector it improves the operation of the main and auxiliary drives, upgrades fuel efficiency and reduces emission pollutant levels. It enhances safety by preventing wheel spinning in braking and acceleration. Electronic displays reduce the number of single indications otherwise needed, thus making for more clarity in information for the driver and facilitating the driver's task. Self-diagnosing and integrated emergency operation (“limp home”) capabilities are to ensure availability, a factor of special importance in commercial vehicles. A data interface standardized as widely as possible would allow add-on systems to be coupled easily and flexibly.
Journal Article

Online Engine Speed Based Adaptation of Air Charge for Two- Wheelers

2013-10-15
2013-32-9037
Regarding the strongly growing two-wheeler market fuel economy, price and emission legislations are in focus of current development work. Fuel economy as well as emissions can be improved by introduction of engine management systems (EMS). In order to provide the benefits of an EMS for low cost motorcycles, efforts are being made at BOSCH to reduce the costs of a port fuel injection (PFI) system. The present paper describes a method of how to reduce the number of sensors of a PFI system by the use of sophisticated software functions based on high-resolution engine speed evaluation. In order to improve the performance of a system working without a MAP-sensor (manifold air pressure sensor) an air charge feature (ACFn) based on engine speed is introduced. It is shown by an experiment that ACFn allows to detect and adapt changes in manifold air pressure. Cross-influences on ACFn are analyzed by simulations and engine test bench measurements.
Technical Paper

Online Engine Speed Based Adaptation of Combustion Phasing and Air-Fuel Ratio: Evaluation of Feature Quality

2015-11-17
2015-32-0749
In the Indian two-wheeler market, legislation and customers demand for a reduction of emissions and an increase of fuel efficiency. For two-wheelers with engine management systems, a cost-efficient approach for this trend exploits that the periodical fluctuation of the engine speed of single cylinder engines contains useful information about its operating conditions. The present article focuses on the quality of the estimation of combustion phasing and air-fuel ratio of a 125cc single cylinder motorcycle engine, obtained from the evaluation of these fluctuations. The robustness of an oxygen sensor-less port fuel injection system can be increased by using the estimated air-fuel ratio to adapt the parameters of the fuel injection algorithm.
Journal Article

Start/Stop Strategies for Two-Wheelers in the Emerging Markets

2013-10-15
2013-32-9125
Fuel economy of two-wheelers is an important factor influencing the purchasing psychology of the consumer within the emerging markets. Additionally, air pollution being a major environmental topic, there is a rising concern about vehicle emissions, especially in the big cities and their metropolitan areas. Potentially, the relatively expensive engine management systems are providing more features and value in comparison to the carburettor counterpart. The combustion system analysis is carried out on a 125 cm3 motorcycle engine and the subsequent numerical simulation comparing the carburettor and the Electronic (Port) Fuel Injection which provides a basis to establish the fuel consumption benefit for the electronic injection systems [1].
X