Refine Your Search

Topic

Author

Search Results

Technical Paper

A Non Contact Strain Gage Torque Sensor for Automotive Servo Driven Steering Systems

1994-03-01
940629
Tapping of one or more torques (ranges 10 Nm and 60 Nm) on the steering column for the purpose of servo control must satisfy high accuracy requirements on the one hand and high safety requirements on the other hand. A suggestion for developing a low-cost solution to this problem is described below: Strain gages optimally satisfy both these requirements: However, for cost reasons, these are not applied directly to the steering column but to a prefabricated, flat steel rod which is laser welded to the torque rod of the steering column. The measuring direction of the strain gages is under 45° to the steering column axis. The strain gages are either vacuum metallized onto the support rod as a thin film or laminated in a particularly low-cost way by means of a foil-type intermediate carrier.
Technical Paper

A Universal and Cost-Effective Fuel Gauge Sensor Based on Wave Propagation Effects in Solid Metal Rods

1994-03-01
940628
In recognition of safety considerations, modern fuel tanks are frequently extremely irregular in shape. This places limits on the application of conventional potentiometric sensors. Required are more universal sensors without mechanically-moving parts. These sensors should also be characterized by especially good resolution and precision in the residual-quantity range, that is, the zero point precision should be of a high order. One type of metal rod can be bent into any of a variety of shapes to provide an effective means of monitoring the fuel level. In this metal rod, the propagation characteristics of a certain type of sound wave, known as bending waves, display major variations according to the level of the surrounding medium: The waves spread more rapidly through the exposed section of the rod than through the area which remains submerged. Thus the rod's characteristic oscillation frequency varies as a function of immersion depth.
Technical Paper

Advanced Planar Oxygen Sensors for Future Emission Control Strategies

1997-02-24
970459
This paper presents advanced planar ZrO2 oxygen sensors being developed at Robert Bosch using a modified tetragonal partially stabilized zirconia (TZP) with high ionic conductivity, high phase stability and high thermo-mechanical strength. Green tape technology combined with highly automated thickfilm techniques allows robust and cost effective manufacturing of those novel sensing elements. Standardization of assembling parts reduces the complexity of the assembly line even in the case of different sensing principles. The sensor family meets the new requirements of modern ULEV strategies like fast light off below 10 s and linear control capability as well as high quality assurance standards. High volume production will start in 1997 for European customers.
Technical Paper

Analysis of the Combustion Mode Switch Between SI and Gasoline HCCI

2012-04-16
2012-01-1105
The worldwide stricter emission legislation and growing demands for lower fuel consumption require for significant efforts to improve combustion efficiency while satisfying the emission quality demands. Homogeneous Charge Compression Ignition (HCCI) on gasoline engines provides a particularly promising and, at the same time, challenging approach, especially regarding the combustion mode switch between spark-ignited (SI) and gasoline HCCI mode and vice-versa. Naturally aspirated (n.a.) HCCI shows considerable potential, but the operation range is air breathing limited due to hot residuals required for auto-ignition and to slow down reaction kinetics. Therefore it is limited to part-load operation. Considering the future gasoline engine market with growing potentials identified on downsized gasoline engines, it is imperative to investigate the synergies and challenges of boosted HCCI.
Technical Paper

Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction

2006-04-03
2006-01-0643
The selective catalytic reduction (SCR) based on urea-water-solution is an effective technique to reduce nitrogen oxides (NOx) emitted from diesel engines. A 3D numerical computer model of the injection of urea-water-solution and their interaction with the exhaust gas flow and exhaust tubing is developed to evaluate different configurations during the development process of such a DeNOx-system. The model accounts for all relevant processes appearing from the injection point to the entrance of the SCR-catalyst: momentum interaction between gas phase and droplets evaporation and thermolysis of droplets hydrolysis of isocyanic acid in gas phase heat transfer between wall and droplets spray/wall-interaction two-component wall film including interaction with gas phase and exhaust tube The single modeling steps are verified with visualizations, patternator measurements, phase-doppler-anemometer results and temperature measurements.
Technical Paper

Application Specific Microcontroller for Multiplex Wiring

1987-02-01
870515
The new aerial communication protocol “Controller Area Network” (CAN) efficiently supports distributed realtime control in automotive applications. In order to unload CPUs from high-speed message transfer, dedicated CAN hardware handles messages up to the communication object level. In multiplex wiring message rates are one to two orders of magnitude lower, allowing to implement the upper communication level more cost-effectively in software. This reduces CAN interface hardware to bitwise protocol handling only. It may be incorporated even into low-end microcontrollers without significantly increasing chip size. Thus the same CAN protocol supports the entire range of serial automotive communication, matching implementation costs to requirements at each performance level.
Technical Paper

Application of ISO 26262 in Distributed Development ISO 26262 in Reality

2009-04-20
2009-01-0758
With its origin in the process industry, the IEC 61508 „Functional safety of electrical/electronic/programmable electronic safety-related systems” is not fully applicable in the automotive industry, forcing the automotive industry to work on an automotive specific adaptation (ISO 26262 “Functional Safety – Road Vehicles”). This ISO 26262 describes an ideal development process that starts from scratch. In reality development activities are often split locally and in time. This can only be handled with a world wide standard as a basis of a common approach, wide enough to give enough freedom to adapt to diverse boundary conditions, but tight enough to hinder local interpretations to be that far, that a complete safety case becomes impossible. Therefore a strict world-wide standard which allows compatible interpretations is mandatory.
Technical Paper

Automotive Application of Biometric Systems and Fingerprint

2000-03-06
2000-01-0171
Until now, the use of biometric systems has not been in the public eye. The high cost of sensors and processing has meant that biometrics was previously restricted to high security access, financial transaction and law enforcement applications. However, as a result of improvements in technology, biometric sensor price and reliability have achieved levels where biometrics is being seriously considered for automotive systems. This paper introduces the field of biometrics, the key terms and processes. Fingerprint Technology and Identification by Fingerprint are discussed, as are the use and applicability of biometrics in automotive applications, including Personal Profiling, Keyless Engine Start and vehicle access authorization. The key findings of investigations over the last years are discussed.
Journal Article

Avoiding Electrical Overstress for Automotive Semiconductors by New Connecting Concepts

2009-04-20
2009-01-0294
Bosch Automotive Semiconductor Unit investigated destroyed semiconductor devices (ASIC) from electronic control unit complaints, which failed due to electrical overstress. It turned out that failure fingerprints could only be reproduced by semiconductor operation far beyond spec limits. One main failure mechanism is caused by hot plugging and bad or late ground connection. In today’s cars some applications are still active for minutes after ignition switch off. So, currents of several amps are delivered and in a typical production or garage environment, hot plugging cannot be avoided completely. Bosch suggests introducing extended ground pins to get an enforced switch on/off sequence during plugging. This poka yoke protection principle is successfully used in other industries for a long time and should now come into cars.
Technical Paper

Bus System for Wiring Actuators of Restraint Systems

1997-02-24
971053
The continuing increase in the performance of restraint systems has led to a drastic increase in the number of actuator devices. The individual wiring of the igniters becomes more and more problematic through the accompanied large number of plug connections and cables. Along with demands for weight and volume reduction, there are requirements for EMI and short circuit protection to eliminate erroneous deployment and misuse. As a solution, a new multi-protocol dual wire bus system is described that has the capability to supply energy and address multiple peripheral output stages to simultaneously fire any combination of actuators.
Technical Paper

Comparison of Shadowgraph Imaging, Laser-Doppler Anemometry and X-Ray Imaging for the Analysis of Near Nozzle Velocities of GDI Fuel Injectors

2017-10-08
2017-01-2302
The fuel spray behavior in the near nozzle region of a gasoline injector is challenging to predict due to existing pressure gradients and turbulences of the internal flow and in-nozzle cavitation. Therefore, statistical parameters for spray characterization through experiments must be considered. The characterization of spray velocity fields in the near-nozzle region is of particular importance as the velocity information is crucial in understanding the hydrodynamic processes which take place further downstream during fuel atomization and mixture formation. This knowledge is needed in order to optimize injector nozzles for future requirements. In this study, the results of three experimental approaches for determination of spray velocity in the near-nozzle region are presented. Two different injector nozzle types were measured through high-speed shadowgraph imaging, Laser Doppler Anemometry (LDA) and X-ray imaging.
Technical Paper

Control Strategy for NOx - Emission Reduction with SCR

2003-11-10
2003-01-3362
Future emission standards for heavy-duty vehicles like Euro 4, Euro 5, US '07 require advanced engine functionality. One contribution to achieve this target is the catalytic reduction of nitrogen oxides by injection of urea water solution to the exhaust gas. An overview on a urea dosing system, also called DENOXTRONIC, is given and a dosing strategy is described.
Technical Paper

Design of a Boosted 2-Cylinder SI-Engine with Gasoline Direct Injection to Define the Needs of Future Powertrains

2012-04-16
2012-01-0832
To meet future CO₂ emissions limits and satisfy the bounds set by exhaust gas legislation reducing the engine displacement while maintaining the power output ("Downsizing") becomes of more and more importance to the SI-engine development process. The total number of cylinders per engine has to be reduced to keep the thermodynamic disadvantages of a small combustion chamber layout as small as possible. Doing so leads to new challenges concerning the mechanical design, the design of the combustion system concept as well as strategies maintaining a satisfying transient torque behavior. To address these challenges a turbocharged 2-cylinder SI engine with gasoline direct injection was designed for research purposes by Weber Motor and Bosch. This paper wants to offer an insight in the design process. The mechanical design as well as the combustion system concept process will be discussed.
Journal Article

Diesel Lubricity Requirements of Future Fuel Injection Equipment

2009-04-20
2009-01-0848
This paper looks at the underlying fundamentals of diesel fuel system lubrication for the highly-loaded contacts found in fuel injection equipment like high-pressure pumps. These types of contacts are already occurring in modern systems and their severity is likely to increase in future applications due to the requirement for increased fuel pressure. The aim of the work was to characterise the tribological behavior of these contacts when lubricated with diesel fuel and diesel fuel treated with lubricity additives and model nitrogen and sulphur compounds of different chemical composition. It is essential to understand the role of diesel fuel and of lubricity additives to ensure that future, more severely-loaded systems, will be free of any wear problem in the field.
Technical Paper

Domain Control Units - the Solution for Future E/E Architectures?

2010-04-12
2010-01-0686
In order to master the increasing complexity of electrical/electronic (E/E) systems in vehicles, E/E architecture design has become an established discipline. The task of the E/E architecture design is to come up with solutions to challenging and often contradictory requirements such as reduced cost and increased flexibility / scalability. One way to optimize the E/E architecture in terms of cost (electronics & wiring harness) is to integrate functions. This can be done by either combining functions from multiple ECUs into a single ECU or by introducing Domain Control Units. Domain Control Units provide the main software functionality for a vehicle domain, while relegating the basic functions of actuator control to connected intelligent actuators. Depending on the different market segments (low price, volume and premium) and the different vehicle domains, the actual usage of Domain Control Units can be quite different and sometimes questionable.
Technical Paper

Dynamic Route Guidance - Different Approaches to the System Concepts

1998-02-23
980603
Dynamic route guidance is a main feature when discussing traffic telematics systems. At the present time, several system concepts are in the development or implementation stage. The key elements of dynamic route guidance systems are illustrated in the following. Two approaches could be used when designing the system architecture: 1. Centralized routing in traffic information centers combined with on-board terminals. 2. Mobile routing by on-board navigation units which use information received from traffic information centers. The different approaches are presented in this paper. The influences on component design and the effects on communication needs are discussed. This leads to the “hybrid” system architecture which is presented including implementation examples.
Technical Paper

ERCOS: An Operating System for Automotive Applications

1996-02-01
960623
This paper describes the concept of the operating system ERCOS (Embedded Real-time Control Operating System). ERCOS has been specially designed to meet the functionality and performance requirements in the area of automotive applications. The ever increasing functional requirements for modern electronic control units are introducing considerable complexity in the area of software development. It is well known that real-time operating systems provide powerful means to handle complex functions under real-time constraints. Past experience, however, has shown that the efficiency and flexibility of operating systems was very often inadequate for automotive applications. To overcome these insufficiencies the operating system ERCOS has been designed with dedicated support for automotive requirements. This has been achieved by supplementing the run-time part of the operating system by powerful off-line tools.
Technical Paper

Experimental Measurement Techniques to Optimize Design of Gasoline Injection Valves

1992-02-01
920520
In order to reduce the spark-ignition engine exhaust-gas emission and fuel consumption, it is essential that the required air/fuel ratio is maintained under all operating conditions. An important contribution to this claim is delivered by the injection valve by metering the fuel precisely and producing fine atomization. In this report experimental methods to get specific measuring information and methods for optimizing flow in injection valves are described. Original valves as well as large-scale models were used for the investigations concerning the steady and unsteady-flow characteristics, and were equipped with a number of different sensors. Holograms of the short-time recording of the spray cone are generated and used for the quantification of the atomization quality when injecting into atmospheric pressure and into vacuum, thus complying with the conditions encountered in the engine intake-manifold.
Technical Paper

Future Electrical Steering Systems: Realizations with Safety Requirements

2000-03-06
2000-01-0822
Additional future requirements for automobiles such as improved vehicle dynamics control, enhanced comfort, increased safety and compact packaging are met by modern electrical steering systems. Based on these requirements the new functionality is realized by various additional electrical components for measuring, signal processing and actuator control. However, the reliability of these new systems has to meet the standard of today's automotive steering products. To achieve the demands of the respective components (e.g. sensors, bus systems, electronic control units, power units, actuators) the systems have to be fault-tolerant and/or fail-silent. The realization of the derived safety structures requires both expertise and experience in design and mass production of safety relevant electrical systems. Beside system safety and system availability the redundant electrical systems also have to meet economic and market requirements.
Technical Paper

Generic Methodology for Vibration and Wear Analysis to Understand Their Influences in an Electric Drivetrain

2020-09-30
2020-01-1506
The prime factor which influences noise and vibrations of electro-mechanical drives is wear at the components. This paper discusses the numerical methods developed for abrasion, vibration calculations and the coupling between wear and Noise Vibration and Harshness (NVH) models of the drive unit. The vibration domain model, initially, focuses on the calculations of mechanical excitations at the gear shafts which are generated via a nonlinear dynamic model. Furthermore, the bearings are studied for the influences on their stiffness and eventually their impact on the harmonics of the drivetrain. Later, free and forced vibrations of the complete drivetrain are simulated via a steady-state dynamic model. Consequently, the paper concentrates on the abrasion calculations at the gears. Wear is a complex process and understanding it is essential for determining the vibro-acoustics characteristics.
X