Refine Your Search

Topic

Author

Search Results

Technical Paper

A Rapid Catalyst Heating System for Gasoline-Fueled Engines

2024-04-09
2024-01-2378
Increasingly stringent tailpipe emissions regulations have prompted renewed interest in catalyst heating technology – where an integrated device supplies supplemental heat to accelerate catalyst ‘light-off’. Bosch and Boysen, following a collaborative multi-year effort, have developed a Rapid Catalyst Heating System (RCH) for gasoline-fueled applications. The RCH system provides upwards of 25 kW of thermal power, greatly enhancing catalyst performance and robustness. Additional benefits include reduction of precious metal loading (versus a ‘PGM-only’ approach) and avoidance of near-engine catalyst placement (limiting the need for enrichment strategies). The following paper provides a technical overview of the Bosch/Boysen (BOB) Rapid Catalyst Heating system – including a detailed review of the system’s architecture, key performance characteristics, and the associated impact on vehicle-level emissions.
Technical Paper

A Virtual Car: Prediction of Sound and Vibration in an Interactive Simulation Environment

2001-04-30
2001-01-1474
Feeling and hearing the results of engineering decisions immediately via a “virtual car” - simultaneous engineering - can significantly shorten vehicle development time. Sound quality and discrete vibration at the driver's position may be predicted and “driven” before the first prototype is built. Although sound cannot yet be predicted in an unknown chassis, the sound and vibration behavior resulting from a new engine, never previously installed in a given vehicle, may be predicted, heard binaurally and felt in an interactive “drivable” simulation based on transfer path analysis. Such a simulation, which includes the binaural sound field and discrete vibration of steering wheel and seat, can also include wind and tire noise to determine if certain engine contributions in sound and vibration may be masked.
Technical Paper

Advanced Methods for the Auralization of Vehicle Interior Tire-Road Noise

2012-11-25
2012-36-0640
Besides powertrain and aerodynamic noise, tire-road noise is an important aspect of the acoustic comfort inside a vehicle. For the subjective evaluation of different tires or vehicles in a benchmark, authentic sound examples are essential. They should be recorded on a real road rather than on a roller dynamometer (avoiding artificial and periodic sounds, especially in the case of a small roller circumference and a smooth surface). The challenge of on-road measurements is the need for separating the components of the interior noise generated by rolling tires, aerodynamic flow and powertrain. This allows for individual judgment of the noise shares. A common approach for eliminating the engine sound is shutting the engine off after acceleration to the desired maximum speed. Operational Transfer Path Analysis (OTPA) can then be used to auralize the tire-road noise at a certain receiver location, where an artificial head records the interior noise during this coast-down.
Journal Article

An Unusual Way to Improve TPA for Strongly-Coupled Systems

2013-05-13
2013-01-1970
In a vehicle's development process, Transfer Path Analysis (TPA) is commonly used for identifying sound sources and their transmission to a receiver. Forces acting on the structure are the reason for the structure-borne sound share of the vehicle interior noise. In practice it is not possible, or too extensive, to measure operational forces directly. Instead, they are often calculated indirectly from accelerations and from additionally measured inertances. As the car body is a strongly coupled system, a force acting at one position results in accelerations throughout the structure. This crosstalk must be considered by using a dense inertance matrix consisting of the ratios between each force excitation and the accelerations at every sensor position. Then a matrix inversion is performed to solve the system of equations describing the coupling of the structure.
Technical Paper

Analysis of Flow Patterns inside an Autothermal Gasoline Reformer

2001-05-07
2001-01-1917
The present paper concentrates on the option of catalytic autothermal reforming of gasoline for fuel cell applications. Major parameters of this process are the “Steam to Carbon Ratio” S/C and the air to fuel ratio λ. Computations assuming thermodynamic equilibrium in the autothermal reactor outlet (ATR) were carried out to attain information about their proper choice, as failure in adjusting the parameters within narrow limits has severe consequences on the reforming process. In order to quantify velocity distribution just ahead the catalyst and to evaluate mixing uniformity we designed an ATR featuring an optical access: Thus flow visualization using PIV (Particle Image Velocimetry) and LIF (Laser Induced Fluorescence) technique is possible. Preliminary PIV-results are presented and compared with CFD computations (Computational Fluid D ynamics).
Technical Paper

Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction

2006-04-03
2006-01-0643
The selective catalytic reduction (SCR) based on urea-water-solution is an effective technique to reduce nitrogen oxides (NOx) emitted from diesel engines. A 3D numerical computer model of the injection of urea-water-solution and their interaction with the exhaust gas flow and exhaust tubing is developed to evaluate different configurations during the development process of such a DeNOx-system. The model accounts for all relevant processes appearing from the injection point to the entrance of the SCR-catalyst: momentum interaction between gas phase and droplets evaporation and thermolysis of droplets hydrolysis of isocyanic acid in gas phase heat transfer between wall and droplets spray/wall-interaction two-component wall film including interaction with gas phase and exhaust tube The single modeling steps are verified with visualizations, patternator measurements, phase-doppler-anemometer results and temperature measurements.
Journal Article

Application of a New Perceptually-Accurate Tonality Assessment Method

2015-06-15
2015-01-2282
For many years in vehicle and other product noise assessments, tonality measurement procedures such as the Tone-to-Noise Ratio, Prominence Ratio and DIN 45681 Tonality have been available to quantify the audibility of prominent tones. Especially through the recent past as product sound pressure levels have become lower, disagreements between perceptions and measurements have increased across a wide range of product categories including automotive, Information Technology and residential products. One factor is that tonality perceptions are caused by spectrally-elevated noise bands of various widths and slopes as well as by pure tones, and usually escape measure in extant tools. Near-superpositions of discrete tones and elevated narrow noise bands are increasingly found in low-level technical sounds. Existing pure-tone methodologies tend to misrecognize an elevated noise band as general masking lowering the audibility of a tone in the measured vicinity, whereas perceptually they add.
Technical Paper

Arrays in Motion - Localization Techniques for Compensation of Relative Motion between Microphone Arrays and Sources

2013-05-13
2013-01-1966
With the exact knowledge of the current positions of the microphones in an array and the potential noise sources, it is possible to compensate a relative motion between them. In the past, techniques exploiting this knowledge have been used successfully, e.g., for the measurement of wind turbines and airplane flyover measurement. In this paper, these ideas are applied and modified for the development of a traffic flow observation system. The main purpose of a vehicle pass by measurement is to extract the continuous noise levels of the dominant sources. With the use of advanced video processing or additional sensor information (radar, light barrier) it is possible to create a continuous tracking model of the vehicle. The scan grid in the beam forming algorithm is then recalculated to compensate the movement. In the resulting acoustic video, the vehicle is fixed and the evolution of the sound sources can be observed and auralized for psychoacoustic evaluations.
Technical Paper

Common Rail - An Attractive Fuel Injection System for Passenger Car DI Diesel Engines

1996-02-01
960870
Passenger car DI Diesel engines need a flexible fuel injection system. Bosch develops a common rail system for this purpose. Besides variation of fuel quantity and start of injection, it permits to choosing freely injection pressure inthe rangeof 150 to 1400 barand injecting fuel in several portions. These new means will contribute to further improvements of DI engines concerning noise, exhaust emissions and engine torque.
Technical Paper

Control Strategy for NOx - Emission Reduction with SCR

2003-11-10
2003-01-3362
Future emission standards for heavy-duty vehicles like Euro 4, Euro 5, US '07 require advanced engine functionality. One contribution to achieve this target is the catalytic reduction of nitrogen oxides by injection of urea water solution to the exhaust gas. An overview on a urea dosing system, also called DENOXTRONIC, is given and a dosing strategy is described.
Journal Article

Current and New Approaches for Brake Noise Evaluation and Rating

2009-10-11
2009-01-3037
Predominant brake noise evaluation and rating was developed many years ago and no longer fulfills the need of modern development work. An extended description of a noisy brake event (European expert group guideline EKB 3006) and a standardized test data exchange format, allowing the comparison of different source test results (EKB 3008) are presented. Today's noise rating systems are described and compared by selected examples. The paper proposes an open 4 level noise rating system (EKB 3007). It starts with simple occurrence statistics, noise rating based on sound levels, situational noise rating including duration and finally based on the human perception, described by psychoacoustics.
Technical Paper

Development of an Engine Management Strategy and a Cost Effective Catalyst System to Meet SULEV Emission Requirements Demonstrated on a V-6 Engine

2004-03-08
2004-01-1490
The study presented in this paper focuses on measures to minimize exhaust gas emissions to meet SULEV targets on a V6 engine by using a cost efficient system configuration. The study consists of three parts. A) In the first stage, the influence of engine management both on raw emissions and catalyst light off performance was optimized. B) Afterwards, the predefined high cell density catalyst system was tested on an engine test bench. In this stage, thermal data and engine out emissions were used for modeling and prediction of light-off performance for further optimized catalyst concepts. C) In the final stage of the program, the emission performance of the test matrix, including high cell density as well as multifunctional single substrate systems, are studied during the FTP cycle. The presented results show the approach to achieve SULEV emission compliance with innovative engine control strategies in combination with a cost effective metallic catalyst design.
Journal Article

Diesel Lubricity Requirements of Future Fuel Injection Equipment

2009-04-20
2009-01-0848
This paper looks at the underlying fundamentals of diesel fuel system lubrication for the highly-loaded contacts found in fuel injection equipment like high-pressure pumps. These types of contacts are already occurring in modern systems and their severity is likely to increase in future applications due to the requirement for increased fuel pressure. The aim of the work was to characterise the tribological behavior of these contacts when lubricated with diesel fuel and diesel fuel treated with lubricity additives and model nitrogen and sulphur compounds of different chemical composition. It is essential to understand the role of diesel fuel and of lubricity additives to ensure that future, more severely-loaded systems, will be free of any wear problem in the field.
Technical Paper

Engine-Independent Exhaust Gas Aftertreatment Using a Burner Heated Catalyst

2006-10-16
2006-01-3401
Meeting current exhaust emission standards requires rapid catalyst light-off. Closed-coupled catalysts are commonly used to reduce light-off time by minimizing exhaust heat loss between the engine and catalyst. However, this exhaust gas system design leads to a coupling of catalyst heating and engine operation. An engine-independent exhaust gas aftertreatment can be realized by combining a burner heated catalyst system (BHC) with an underfloor catalyst located far away from the engine. This paper describes some basic characteristics of such a BHC system and the results of fitting this system into a Volkswagen Touareg where a single catalyst was located about 1.8 m downstream of the engine. Nevertheless, it was possible to reach about 50% of the current European emission standard EU 4 without additional fuel consumption caused by the BHC system.
Technical Paper

Future Acoustics of Electric-Vehicle

2012-11-25
2012-36-0612
Since currently a technological shift from automobiles with internal combustion engines now to electric vehicles occurs, new challenges in vehicle acoustics must be met. Although, one of the core duties of NVH engineers will still be the prevention and treatment of disturbing noises, the targeted creation of intended and designed sounds will gain in importance significantly. This sound design task is no longer a choice but a necessity. In the scope of hybrid and electric cars a new kind of acoustic feedback must be created. Surely, the simple electric motor sound, the “tram on wheels”, will not be the final solution accepted by customers. Besides the mandatory use of technical methods like transfer path analysis enabling the reliable identification of the reasons for acoustical problems by separation of sources and transfer paths or binaural panel contribution analysis, investigations of customer preferences on the basis of simulated and real test drives will become more important.
Technical Paper

Identification of Important Issues and Driving Modes for Enhancing NVH Performance of Electric Vehicles Based on Comparative Analysis of User Experience with Conventional ICE Vehicles

2024-04-09
2024-01-2341
The challenges concerning noise, vibration, and harshness (NVH) performance in the vehicle cabin have been significantly changed by the powertrain shift from a conventional drive unit with an internal-combustion engine (ICE) to electric drive units (eAxles). However, there is few research regarding the impact of electrification on NVH considering the influence of the context such as multi-stimuli and traffic rules during a real-life driving. In this study, the authors conducted test drives using EVs and ICEVs on public roads in Europe and conducted a statistical analysis of the difference in driver impression of NVH performance based on interviews during actual driving. The impression data were categorized into clusters corresponding to related phenomena or features based on driver comments. Furthermore, the vehicles data (vehicle speed, acceleration, GPS information, etc.) were recorded to associate the driver impressions with the vehicle’s conditions when the comments were made.
Technical Paper

Improving Diesel Sound Quality on Engine Level and Vehicle Level - A Holistic Approach

2007-05-15
2007-01-2372
Diesel impulsiveness (so called Diesel knocking) present in the cabin of diesel vehicles is perceived as unpleasant because of its impulsive time structure. JD Power data clearly show the customers preference of vehicles with little Diesel knocking over those with severe knocking. Corresponding objective descriptors that reflect the customers' perception are introduced. The occurrence of such noise patterns is influenced by the combustion process itself as well as by all excited mechanical components within the power train. Further the transfer characteristics of the engine structure and various vehicle noise paths do contribute to a poor Diesel Sound Quality. It is essential that all these factors have to be considered in combination. This paper provides an overview about suitable methods and technologies, including Binaural Transfer Path Analysis and Synthesis. The potential of the approach is demonstrated by an example.
Technical Paper

Interactive Auralization of Powertrain Sounds Using Measured And Simulated Excitation

2007-05-15
2007-01-2214
Interior vehicle sound is an important factor for customer satisfaction. To achieve an optimized product sound at an early stage of development, subjective evaluation methods as well as analysis and prediction tools must be combined to provide reliable information relevant to product quality and comfort judgments. Binaural Transfer Path Synthesis (BTPS) is a well-known method to calculate interior noise and vibrations based on multi-channel input measurements. Recent enhancements of the BTPS method enable taking into account also simulated excitations, for example engine mount vibrations calculated using MBS and/or FEM simulations, allowing the prediction of interior noise even if the engine is not available in hardware. Interactive evaluation of the generated sounds in a vibro-acoustic driving simulator helps to increase understanding of customer responses and perception of target sounds.
Technical Paper

Large Eddy Simulations and Tracer-LIF Diagnostics of Wall Film Dynamics in an Optically Accessible GDI Research Engine

2019-09-09
2019-24-0131
Large Eddy Simulations (LES) and tracer-based Laser-Induced Fluorescence (LIF) measurements were performed to study the dynamics of fuel wall-films on the piston top of an optically accessible, four-valve pent-roof GDI research engine for a total of eight operating conditions. Starting from a reference point, the systematic variations include changes in engine speed (600; 1,200 and 2,000 RPM) and load (1000 and 500 mbar intake pressure); concerning the fuel path the Start Of Injection (SOI=360°, 390° and 420° CA after gas exchange TDC) as well as the injection pressure (10, 20 and 35 MPa) were varied. For each condition, 40 experimental images were acquired phase-locked at 10° CA intervals after SOI, showing the wall-film dynamics in terms of spatial extent, thickness and temperature.
Technical Paper

Method of NVH Quality Rating of Diesel Combustion Noise Using Typical Driving Modes

2009-05-19
2009-01-2078
The development of a new method to evaluate the NVH quality of diesel combustion noise bases upon following questions by regarding typical driving modes: Driving behavior with diesel vehicles Which driving situation causes an annoying diesel combustion noise Judgment of diesel combustion noise as good or bad A suitable test course was determined to regard typical driving situations as well as the European driving behavior. Vehicles of different segments were tested on that course. The recorded driving style and the simultaneously given comments on the diesel combustion noise results to a typical driving mode linked to acoustics sensation of diesel combustion noise. The next step was to simulate this driving mode on the chassis dynamometer for acoustical measurements. The recordings of several vehicles were evaluated in listening test to identify a metric. The base of metric was objective analyses evaluating diesel combustion noise in relevant driving situations.
X