Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Combustion Characteristics, Performance and NOx Emissions of a Heavy-Duty Ethanol-Diesel Direct Injection Engine

2020-09-15
2020-01-2077
Diffusive combustion of direct injected ethanol is investigated in a heavy-duty single cylinder engine for a broad range of operating conditions. Ethanol has a high potential as fossil fuel alternative, as it provides a better carbon footprint and has more sustainable production pathways. The introduction of ethanol as fuel for heavy-duty compression-ignition engines can contribute to decarbonize the transport sector within a short time frame. Given the resistance to autoignition of ethanol, the engine is equipped with two injectors mounted in the same combustion chamber, allowing the simultaneous and independent actuation of the main injection of pure ethanol and a pilot injection of diesel as an ignition source. The influence of the dual-fuel injection strategy on ethanol ignition, combustion characteristics, engine performance and NOx emissions is evaluated by varying the start of injection of both fuels and the ethanol-diesel ratio.
Technical Paper

Particle Emission Measurements in a SI CNG Engine Using Oils with Controlled Ash Content

2019-01-15
2019-01-0053
Clean combustion is one of the inherent benefits of using a high methane content fuel, natural gas or biogas. A single carbon atom in the fuel molecule results, to a large extent, in particle-free combustion. This is due to the high energy required for binding multiple carbon atoms together during the combustion process, required to form soot particles. When scaling up this process and applying it in the internal combustion engine, the resulting emissions from the engine have not been observed to be as particle free as the theory on methane combustion indicates. These particles stem from the combustion of engine oil and its ash content. One common practice has been to lower the ash content to regulate the particulate emissions, as was done for diesel engines. For a gas engine, this approach has been difficult to apply, as the piston and valvetrain lubrication becomes insufficient.
Technical Paper

The Effect of Zinc and Other Metal Carboxylates on Nozzle Fouling

2016-04-05
2016-01-0837
A problem for the diesel engine that remains since its invention is injection nozzle hole fouling. More advanced injection systems and more complex fuels, now also including bio-components, have made the problem more intricate. Zinc and biodiesel have often been accused of being a big part of the problem, but is this really the case? In this study, nozzle fouling experiments were performed on a single cylinder engine. The experiments were divided in three parts, the first part studied the influence of zinc neodecanoate concentration on nozzle hole fouling, the second part studied the effect of neodecanoates of zinc, sodium, calcium, copper, and iron on fuel flow loss and in the last part it was examined how RME concentration in zinc neodecanoate contaminated petroleum diesel affected nozzle hole fouling propensity. After completed experiments, the nozzles were cut open and the deposits were analyzed in SEM and with EDX.
X