Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Study on the Effects of Cetane Number on the Energy Balance between Differently Sized Engines

2017-03-28
2017-01-0805
This paper investigates the effect of the cetane number (CN) of a diesel fuel on the energy balance between a light duty (1.9L) and medium duty (4.5L) diesel engine. The two engines have a similar stroke to bore (S/B) ratio, and all other control parameters including: geometric compression ratio, cylinder number, stroke, and combustion chamber, have been kept the same, meaning that only the displacement changes between the engine platforms. Two Coordinating Research Council (CRC) diesel fuels for advanced combustion engines (FACE) were studied. The two fuels were selected to have a similar distillation profile and aromatic content, but varying CN. The effects on the energy balance of the engines were considered at two operating conditions; a “low load” condition of 1500 rev/min (RPM) and nominally 1.88 bar brake mean effective pressure (BMEP), and a “medium load” condition of 1500 RPM and 5.65 BMEP.
Technical Paper

Amplified Pressure Waves During Autoignition: Relevance to CAI Engines

2002-10-21
2002-01-2868
Controlled autoignition (CAI) engines ideally operate at very lean stoichiometries to achieve low NOx emissions. But at high loads, when combustion approaches stoichiometric, they become noisy and severe engine knock develops. A possible cause is the development of amplifying pressure waves near the hot spots that inevitably occur in the autoigniting gas. This paper presents the results from numerical solutions at realistic engine conditions of the detailed chemical kinetic equations with acoustic wave propagation. Those calculations that involve hot spots must include a spatial dimension. Because of this, they are much more time-consuming than for the homogeneous case. A model system of mixtures of 0.5 H2-0.5 CO with air for equivalence ratios, ϕ, between 0.45 and 1.0 has been used at engine-like temperatures and pressures. These calculations investigate the behaviour for various values of ϕ, hot spot size and temperature elevation.
Journal Article

An Investigation into the Characteristics of DISI Injector Deposits Using Advanced Analytical Methods

2014-10-13
2014-01-2722
There is an increasing recognition of injector deposit (ID) formation in fuel injection equipment as direct injection spark ignition (DISI) engine technologies advance to meet increasingly stringent emission legislation and fuel economy requirements. While it is known that the phenomena of ID in DISI engines can be influenced by changes in fuel composition, including increasing usage of aliphatic alcohols and additive chemistries to enhance fuel performance, there is however still a great deal of uncertainty regarding the physical and chemical structure of these deposits, and the mechanisms of deposit formation. In this study, a mechanical cracking sample preparation technique was developed to assess the deposits across DISI injectors fuelled with gasoline and blends of 85% ethanol (E85).
Technical Paper

An Optical Characterization of Atomization in Non-Evaporating Diesel Sprays

2016-04-05
2016-01-0865
High-speed planar laser Mie scattering and Laser Induced Fluorescence (PLIF) were employed for the determination of Sauter Mean Diameter (SMD) distribution in non-evaporating diesel sprays. The effect of rail pressure, distillation profile, and consequent fuel viscosity on the drop size distribution developing during primary and secondary atomization was investigated. Samples of conventional crude-oil derived middle-distillate diesel and light distillate kerosene were delivered into an optically accessible mini-sac injector, using a customized high-pressure common rail diesel fuel injection system. Two optical channels were employed to capture images of elastic Mie and inelastic LIF scattering simultaneously on a high-speed video camera at 10 kHz. Results are presented for sprays obtained at maximum needle lift during the injection. These reveal that the emergent sprays exhibit axial asymmetry and vorticity.
Technical Paper

An Optical Characterization of the Effect of High-Pressure Hydrodynamic Cavitation on Diesel

2016-04-05
2016-01-0841
Most modern high-pressure common rail diesel fuel injection systems employ an internal pressure equalization system in order to support needle lift, enabling precise control of the injected fuel mass. This results in the return of a fraction of the high-pressure diesel back to the fuel tank. The diesel fuel flow occurring in the injector spill passages is expected to be a cavitating flow, which is known to promote fuel ageing. The cavitation of diesel promotes nano-particle formation through induced pyrolysis and oxidation, which may result in deposits in the vehicle fuel system. A purpose-built high-pressure cavitation flow rig has been employed to investigate the stability of unadditised crude-oil derived diesel and paraffin-blend model diesel, which were subjected to continuous hydrodynamic cavitation flow across a single-hole research diesel nozzle.
Technical Paper

Benefits of GTL Fuel in Vehicles Equipped with Diesel Particulate Filters

2009-06-15
2009-01-1934
Synthetic fuels are expected to play an important role for future mobility, because they can be introduced seamlessly alongside conventional fuels without the need for new infrastructure. Thus, understanding the interaction of GTL fuels with modern engines, and aftertreatment systems, is important. The current study investigates potential benefits of GTL fuel in respect of diesel particulate filters (DPF). Experiments were conducted on a Euro 4 TDI engine, comparing the DPF response to two different fuels, normal diesel and GTL fuel. The investigation focused on the accumulation and regeneration behavior of the DPF. Results indicated that GTL fuel reduced particulate formation to such an extent that the regeneration cycle was significantly elongated, by ∼70% compared with conventional diesel. Thus, the engine could operate for this increased time before the DPF reached maximum load and regeneration was needed.
Technical Paper

Combustion Imaging and Analysis in a Gasoline Direct Injection Engine

2004-03-08
2004-01-0045
A single cylinder Direct Injection Spark Ignition (DISI) engine with optical access has been used for combustion studies with both early injection and late injection for stratified charge operation. Cylinder pressure records have been used for combustion analysis that has been synchronised with the imaging. A high speed cine camera has been used for imaging combustion within a cycle, while a CCD camera has been used for imaging at fixed crank angles, so as to obtain information on cycle-by-cycle variations. The CCD images have also been analysed to give information on the quantity of soot present during combustion. Tests have been conducted with a reference unleaded gasoline (ULG), and pure fuel components: iso-octane (a representative alkane), and toluene (a representative aromatic). The results show diffusion-controlled combustion occurring in so-called homogeneous combustion with early injection.
Technical Paper

Combustion and Emissions Performance Analysis of Conventional and Future Fuels using Advanced CAE

2013-10-14
2013-01-2673
In recent years, there has been rapid progress in characterizing the detailed chemical kinetics associated with the oxidation of liquid hydrocarbons and their blends. However adding these fuel models to the industrial engineer's toolkit has proven a major challenge due to issues associated with high CPU cost and the poor suitability of many of the most promising and well known fuel models to IC engine applications. This paper demonstrates the state-of-the-art in the analysis and modelling of current and future transportation fuels or fuel blends for internal combustion engine applications. First-of-all, a benchmarking of eleven representative fuel models (39 to 1034 species in size) is carried out at engine/engine-like operating conditions by adopting the standard Research Octane and Cetane Number test data for comparison. Next, methods to construct a fuel model for a commercial fuel are outlined using a simple, yet robust surrogate mapping technique.
Technical Paper

Development of Chrysler Oxidation and Deposit Engine Oil Certification Test

2015-09-01
2015-01-2045
With the impending development of GF-6, the newest generation of engine oil, a new standardized oil oxidation and piston deposit test was developed using Chrysler 3.6 L Pentastar engine. The performance requirements and approval for passenger car light duty gasoline engine oil categories are set by the International Lubricants Standardization and Approval committee (ILSAC) and the American Petroleum Institute (API) using standardized testing protocols developed under the guidance of ASTM, the American Society for Testing and Materials. This paper describes the development of a new ASTM Chrysler oxidation and deposit test that will be used to evaluate lubricants performance for oil thickening and viscosity increase, and piston deposits.
Technical Paper

Development of an Injector Deposit Formation Test Method for a Medium-Duty Diesel Engine

2015-09-01
2015-01-1914
In a modern diesel engine, a high fuel injection pressure is achieved by a common-rail system. Therefore, it is important to understand the effects of fuel properties on engine performances because a diesel fuel could deteriorate inside an injector at such severe conditions. The test methods so far basically use the fuel with pro-fouling agent to form deposit on injector. In this study, a novel test procedure was developed to evaluate the effect of the use of the fuel with and without zinc contaminant on injector performance. With Zn doped European specification B7 fuel (7% biodiesel) as a reference, the test result showed that an engine torque decreased almost lineally over time, and the overall torque drop was 9% after 300 hours. The investigation of the dismantled injector after the test revealed that the deposit was not formed on the sliding parts of the injector, but on the nozzle hole surface.
Technical Paper

Diesel Engine Performance and Emissions when First Generation Meets Next Generation Biodiesel

2009-06-15
2009-01-1935
Limits on the total future potential of biodiesel fuel due to the availability of raw materials mean that ambitious 20% fuel replacement targets will need to be met by the use of both first and next generation biodiesel fuels. The use of higher percentage biodiesel blends requires engine recalibration, as it affects engine performance, combustion patterns and emissions. Previous work has shown that the combustion of 50:50 blends of biodiesel fuels (first generation RME and next generation synthetic fuel) can give diesel fuel-like performance (i.e. in-cylinder pressure, fuel injection and heat release patterns). This means engine recalibration can be avoided, plus a reduction in all the regulated emissions. Using a 30% biodiesel blend (with different first and next generation proportions) mixed with Diesel may be a more realistic future fuel.
Technical Paper

Effect of Diesel Properties on Emissions and Fuel Consumption from Euro 4, 5 and 6 European Passenger Cars

2016-10-17
2016-01-2246
Certain diesel fuel specification properties are considered to be environmental parameters according to the European Fuels Quality Directive (FQD, 2009/EC/30) and previous regulations. These limits included in the EN 590 specification were derived from the European Programme on Emissions, Fuels and Engine Technologies (EPEFE) which was carried out in the 1990’s on diesel vehicles meeting Euro 2 emissions standards. These limits could potentially constrain FAME blending levels higher than 7% v/v. In addition, no significant work has been conducted since to investigate whether relaxing these limits would give rise to performance or emissions debits or fuel consumption benefits in more modern vehicles. The objective of this test programme was to evaluate the impact of specific diesel properties on emissions and fuel consumption in Euro 4, Euro 5 and Euro 6 light-duty diesel vehicle technologies.
Technical Paper

Effect of Octane Number on the Performance of Euro 5 and Euro 6 Gasoline Passenger Cars

2017-03-28
2017-01-0811
Research Octane Number (RON) and Motor Octane Number (MON) are used to describe gasoline combustion which describe antiknock performance under different conditions. Recent literature suggests that MON is less important than RON in modern cars and a relaxation in the MON specification could improve vehicle performance. At the same time, for the same octane number change, increasing RON appears to provide more benefit to engine power and acceleration than reducing MON. Some workers have advocated the use of an octane index (OI) which incorporates both parameters instead of either RON or MON to give an indication of gasoline knock resistance. Previous Concawe work investigated the effect of RON and MON on the power and acceleration performance of two Euro 4 gasoline passenger cars during an especially-designed acceleration test cycle.
Technical Paper

Emissions Response of a European Specification Direct-Injection Gasoline Vehicle to a Fuels Matrix Incorporating Independent Variations in Both Compositional and Distillation Parameters

1999-10-25
1999-01-3663
An emissions programme has been undertaken to gain information on the effect of selected fuel parameters on gasoline direct injection (G-DI) vehicle technology(1) with respect to exhaust emissions. Seven fuel parameters, namely aromatic, methyl-tertiary-butyl ether (MTBE), sulphur and olefin content as well as 3 distillation parameters covering the whole boiling range, were independently investigated. It was found that, overall, the fuel effects on regulated (THC, CO, NOx), particulate (Pm), and CO2 emissions were relatively small.
Technical Paper

Exhaust gas fuel reforming for IC Engines using diesel type fuels

2007-07-23
2007-01-2044
Control of NOx and Particulate Matter (PM) emissions from diesel engines remains a significant challenge. One approach to reduce both emissions simultaneously without fuel economy penalty is the reformed exhaust gas recirculation (REGR) technique, where part of the fuel is catalytically reacted with hot engine exhaust gas to produce a hydrogen-rich combustible gas that is then fed to the engine. On the contrary to fuel cell technology where the reforming requirements are to produce a reformate with maximized H2 concentration and minimized (virtually zero) CO concentration, the key requirement of the application of the exhaust gas fuel reforming technique in engines is the efficient on-demand generation of a reformate with only a relatively low concentration of hydrogen (typically up to 20%).
Technical Paper

Fuel Anti-Knock Quality - Part I. Engine Studies

2001-09-24
2001-01-3584
This is the first part of a two-part study on how to define the anti-knock quality of practical fuels. Knock intensity is measured in two single-cylinder research engines using different fuels at different mixture strengths, throttle settings and two compression ratios. The anti-knock quality of a fuel in a given engine operating condition is defined by its octane index OI = RON - KS where K is a constant for that condition and S is the sensitivity, (RON-MON), and RON and MON are the Research and Motor Octane numbers respectively. The higher the octane index, the better the anti-knock quality of the fuel. K is often assumed to be 0.5 so that OI=(RON+MON)/2. However, it is found that K depends on engine operating conditions and in some cases, K is negative so that for a given RON, a fuel with higher sensitivity (lower MON) has better anti-knock quality. The value of K decreases as the engine becomes more prone to knock i.e. as its octane requirement increases.
Technical Paper

Heavy Duty Diesel Engine Fuel Economy: Lubricant Sensitivities

2000-06-19
2000-01-2056
The fuel consumption of heavy duty diesel engines is of great importance to fleet operators, since fuel can contribute up to 30% of the operating costs. This paper discusses the differences between fuel economy oils for heavy duty diesel engines and passenger car engines. A simple model is then presented showing how the reduced friction due to the use of fuel economy lubricants (both in the engine and the transmission) can lead to fuel consumption benefits. By including realistic losses due to air resistance and tyre rolling resistance, the model can predict fuel consumption benefits under different speed and load conditions that are in reasonable agreement with the benefits found in carefully controlled field trials.
Technical Paper

Impact of Diesel Fuel Composition on Soot Oxidation Characteristics

2009-04-20
2009-01-0286
The regeneration of a Diesel Particulate Filter (DPF) is dependent on both the amount and type of soot present on the filter. The objective of this work is to understand how the fuel can affect this ease with which soot can be oxidized. This soot was produced in a two-cylinder four-stroke direct-injection diesel engine, operated with a matrix of fuels with varying aromatic and sulphur level. Their oxidation behaviour in different environments was determined by Temperature Programmed Oxidation in TGA and a six-flow reactor. Transmission electron microscopy was used to examine the soot morphology. Oxidation with only O2 shows oxidation temperatures strongly dependent on the fuel type. Soot oxidation in the presence of NO and a Pt-catalyst results in a lower oxidation temperature. SO2 has an inhibiting effect leading to higher soot oxidation temperature.
Journal Article

Impact of Fuel Sensitivity (RON-MON) on Engine Efficiency

2017-03-28
2017-01-0799
Modern spark ignition engines can take advantage of better fuel octane quality either towards improving acceleration performance or fuel economy via an active ignition management system. Higher fuel octane allows for spark timing advance and consequently higher torque output and higher engine efficiency. Additionally, engines can be designed with higher compression ratios if a higher anti-knock quality fuel is used. Due to historical reasons, Research Octane (RON) and Motor Octane Number (MON) are the metrics used to characterize the anti-knock quality of a fuel. The test conditions used to compute RON and MON correlated well with those in older engines designed about 20 years ago. But the correlation has drifted considerably in the recent past due to advances in engine infrastructures mainly governed by stringent fuel economy and emission standards.
Journal Article

Injector Fouling and Its Impact on Engine Emissions and Spray Characteristics in Gasoline Direct Injection Engines

2017-03-28
2017-01-0808
In Gasoline Direct Injection engines, direct exposure of the injector to the flame can cause combustion products to accumulate on the nozzle, which can result in increased particulate emissions. This research observes the impact of injector fouling on particulate emissions and the associated injector spray pattern and shows how both can be reversed by utilising fuel detergency. For this purpose multi-hole injectors were deliberately fouled in a four-cylinder test engine with two different base fuels. During a four hour injector fouling cycle particulate numbers (PN) increased by up to two orders of magnitude. The drift could be reversed by switching to a fuel blend that contained a detergent additive. In addition, it was possible to completely avoid any PN increase, when the detergent containing fuel was used from the beginning of the test. Microscopy showed that increased injector fouling coincided with increased particulate emissions.
X