Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

An Experimental Study of Oil Transport between the Piston Ring Pack and Cylinder Liner

2005-10-24
2005-01-3823
The paper presents a detailed study of a unique lubricating oil transport and exchange path that is important for friction, wear, and oil consumption in a 4 stroke spark ignition engine, namely the oil flow from the piston to the cylinder liner. The study consisted of experiments with a test engine utilizing 2D LIF (Two Dimensional Laser Induced Fluorescence) techniques to view real time oil transport and exchange, along with computer modeling. The effects of engine speed, load, and oil ring design were included as part of the research. The test conditions ranged from 800 RPM to 4500 RPM, while the load was varied from closed throttle to wide open throttle. Several different oil control ring designs were utilized, including U-Flex, Twin-Land, and 3-Piece. Oil transport and exchange from the piston to the liner was observed under several different engine conditions, typically moderate to high engine speeds and low loads.
Technical Paper

Development of Engine Lubricant Film Thickness Diagnostics Using Fiber Optics and Laser Fluorescence

1992-02-01
920651
An apparatus was designed and applied to measure the oil-film thickness in a production engine using the principle of laser-induced fluorescence. The apparatus incorporated fiber optics technology in its design with an aim to improve the ease of installation, portability, durability, spatial resolution and signal-to-noise ratio of previous designs using conventional optics, which hitherto have been used almost exclusively in studying oil-film characteristics in detail. Bench tests and engine tests were conducted to study the optimum combination of system components and to evaluate the performance of the design. These tests indicate that the goals of the design have been achieved. The increased spatial resolution enabled more precise identification of important lubricant features around the piston rings.
Technical Paper

Experimental Survey of Lubricant-Film Characteristics and Oil Consumption in a Small Diesel Engine

1991-02-01
910741
Parallel measurements of lubricant-film behavior and oil consumption in two identical small production IDI diesel engines are presented. Oil consumption was measured using tritium as a radioactive tracer, and instantaneous film thickness data between the piston and liner were obtained using laser fluorescence diagnostics. The data covered single- and multi-grade lubricants and five different ring configurations (two-piece vs three-piece rings at various ring tensions). The data illustrate (a) oil-film profiles under the rings, especially around the leading and trailing edges, (b) accumulation of oil on piston lands and skirt, (c) circumferential variations around the bore, (d) observations on ring rotation, and (e) the piston-skirt oil-pumping mechanism. Effects of lubricants and piston-ring configurations on oil-film characteristics are investigated, and the oil consumption data are compared with oil-film thickness measurements.
Technical Paper

Investigation of Oil Transport Mechanisms in the Piston Ring Pack of a Single Cylinder Diesel Engine, Using Two Dimensional Laser Induced Fluorescence

1998-10-19
982658
A two-dimensional Laser Induced Fluorescence (LIF) system was developed to visualize the oil distribution and study the oil transport in the piston ring pack of a single-cylinder diesel engine through an optical window on the liner. The system gives high spatial and intensity resolutions so that detailed oil distribution on the piston as well as between the rings and the liner can be studied. This work primarily focused on investigating different oil transport mechanisms on piston crown land and second land under various engine operating conditions. Oil accumulation on the crown land was observed under certain operating conditions and top ring up-scraping was deemed to be the source for this oil accumulation. Two mechanisms for the oil flow on the second land were identified, namely, inertia driven oil flow in the axial direction and oil dragging by gas flow in the circumferential direction. Finally, the effects of ring rotation were investigated.
Technical Paper

Modeling the Dynamics and Lubrication of Three Piece Oil Control Rings in Internal Combustion Engines

1998-10-19
982657
The oil control ring is the most critical component for oil consumption and friction from the piston system in internal combustion engines. Three-piece oil control rings are widely used in Spark Ignition (SI) engines. However, the dynamics and lubrication of three piece oil control rings have not been thoroughly studied from the theoretical point of view. In this work, a model was developed to predict side sealing, bore sealing, friction, and asperity contact between rails and groove as well as between rails and the liner in a Three Piece Oil Control Ring (TPOCR). The model couples the axial and twist dynamics of the two rails of TPOCR and the lubrication between two rails and the cylinder bore. Detailed rail/groove and rail/liner interactions were considered. The pressure distribution from oil squeezing and asperity contact between the flanks of the rails and the groove were both considered for rail/groove interaction.
Technical Paper

Oil Transport in the Piston Ring Pack (Part I): Identification and Characterization of the Main Oil Transport Routes and Mechanisms

2003-05-19
2003-01-1952
Engine oil consumption is one of the primary interests for the automotive industry in controlling emissions and reducing service cost. Due to a lack of understanding of the mechanisms of oil transport along the piston, reducing oil consumption from the ring pack of internal combustion engines has been extremely challenging for engine manufacturers and suppliers. Consequently, a thorough experimental characterization of oil transport processes is critical to 1) reduce lead-time and cost of new piston ring pack development, 2) provide the physically based oil transport models needed to develop analytical tools for oil consumption prediction. In this work, a two-dimensional multiple-dye Laser-Induced Fluorescence (LIF) visualization system was successfully implemented in a diesel and a spark-ignition engine.
X