Refine Your Search

Topic

Author

Search Results

Technical Paper

A Feedback and Feedforward Control Algorithm for a Manual Transmission Vehicle Simulation Model

2018-04-03
2018-01-1356
Authors were challenged with a task of developing a full vehicle simulation model, with a target to simulate the electrical system performance and perform digital tests like Battery Charge Balance, in addition to the fuel efficiency estimation. A vehicle is a complicated problem or domain to model, due to the complexities of subsystems. Even more difficult task is to have a control algorithm which controls the vehicle model with the required control signals to follow the test specification. Particularly, simulating the control of a vehicle with a manual transmission is complicated due to many associated control signals (Throttle, Brake and Clutch) and interruptions like gear changes. In this paper, the development of a full vehicle model aimed at the assessment of electrical system performance of the vehicle is discussed in brief.
Technical Paper

A Low Cost Euro-III Development Strategy for 4 L Engine for Commercial Vehicle Application

2006-10-16
2006-01-3384
Reduction of NOx (Oxides of Nitrogen) and particulates from engine exhaust is one of the prime considerations in current research and development in automotive industry. The present paper describes the combustion optimization done on a four cylinder, 4 liter DI diesel engine to meet stringent Euro-III emission norms. The engine FIE (Fuel Injection Equipment) and injector geometry was optimized for performance and emission. Smoke measurements were considered as indicative of soot, to predict particulate emissions. This was done to simplify the overall process and save development time. It was concluded that by combining the flexibility of electronically controlled fuel injection begin, with improved nozzle technologies, with higher spray velocities and spray penetration, a considerable reduction in NOx and particulate emissions can be achieved. This can serve as a low cost solution, without any exhaust after-treatment systems.
Technical Paper

A Novel Approach for Diagnostics, End of Line and System Performance Checks for Micro Hybrid Battery Management Systems

2014-04-01
2014-01-0291
Micro Hybrid Systems are a premier approach for improving fuel efficiency and reducing emissions, by improving the efficiency of electrical energy generation, storage, distribution and consumption, yet with lower costs associated with development and implementation. However, significant efforts are required while implementing micro hybrid systems, arising out of components like Intelligent Battery Sensor (IBS). IBS provides battery measurements and battery status, and in addition mission critical diagnostic data on a communication line to micro hybrid controller. However, this set of data from IBS is not available instantly after its initialization, as it enters into a lengthy learning phase, where it learns the battery parameters, before it gives the required data on the communication line. This learning period spans from 3 to 8 hours, until the IBS is fully functional and is capable of supporting the system functionalities.
Technical Paper

AMT Reverse Gear Engagement Dynamics and Control

2019-01-09
2019-26-0046
Now a day’s automated manual transmissions (AMT) are getting popular because of hassle-free gear shifting and improved fuel economy. OEMs are converting their existing manual gearbox to AMT gearbox with solution like hydraulic or electric AMT kit that replaces the manual shift mechanism to automated actuators. Generally, in manual gearbox, the operational principal of reverse gear is sliding mesh. Due to sliding mesh gear arrangement, it can create interruption for gearshift while controlling shift actuators. In this paper, reverse gear shift arrangement and its operational dynamics at different operating condition has been studied and analyzed in detail. Based on status of vehicle, to ease the gearshift, engagement flow process proposed. The control methods that increases probability of smooth and easier shifting in all operating condition discussed in detail. The developed control algorithm discussed along with its implementation on real vehicle and results.
Technical Paper

An Engine Stop Start System with Driver Behavior Learning and Adaption for Improving the User Experience

2018-04-03
2018-01-0609
Engine Stop/Start System (ESS) promises to reduce greenhouse emissions and improve fuel economy of vehicles. Previous work of the Authors was concentrated on bridging the gap of improvement in fuel economy promised by ESS under standard laboratory conditions and actual driving conditions. Findings from the practical studies lead to a conclusion that ESS is not so popular among the customers, due to the complexities of the system operation and poor integration of the system design with the driver behavior. In addition, due to various functional safety requirements, and traffic conditions, actual benefits of ESS are reduced. A modified control algorithm was proposed and proven for the local driving conditions in India. The ways in which a given driver behaves on the controls of the vehicles like Clutch and Brake Pedals, Gear Shift Lever were not uniform across the demography of study and varied significantly.
Journal Article

An Intelligent Alternator Control Mechanism for Energy Recuperation and Fuel Efficiency Improvement

2013-04-08
2013-01-1750
With the current state of ever rising fuel prices and unavailability of affordable alternate technologies, significant research and development efforts have been invested in recent times towards improving fuel efficiency of vehicles powered with conventional internal combustion engines. To achieve this, a varied approach has been adopted by researchers to cover the entire energy chain including fuel quality, combustion quality, power generation efficiency, down-sizing, power consumption efficiency, etc. Apart from energy generation, distribution and consumption, another domain that has been subjected to significant scrutiny is energy recuperation or recovery. A moving vehicle and a running engine provide a number of opportunities for useful back-recovery and storage of energy. The most significant sources for recuperation are the kinetic energy of the moving vehicle or running engine and to a lesser extent the thermal energy from medium such as exhaust gas.
Technical Paper

Application of CFD Methodology to Reduce the Pressure Drop and Water Entry in the Air Intake System of Turbocharged Engine

2008-04-14
2008-01-1172
When an automobile negotiates a flooded region, water is splashed due to the rotational motion of the wheels. This water enters the air intake system of the turbocharged intercooled engine along with air and can pass through the turbocharger, intercooler and enter the engine. As water is an incompressible fluid, the piston cannot compress water inside the cylinder which leads to connecting rod bending and severe engine damage. This paper explains how the same has been resolved using CFD methodology and proposes the re-designed model of mud cover as a solution to this problem. The entire process has been streamlined and major time and cost reduction achieved by using simulation for optimization. The simulated results have been validated by extensive trials for correlation and outdoor tests for durability. Same analysis technique is used as a template to modify the air intake system.
Technical Paper

Augmenting Light Weighting Horizon in Automotive

2014-04-28
2014-28-0023
Better ride and comfort, enhanced safety, reliability and durability, lower running cost as well as cost of ownership continue to be challenges for automotive OEMs. Higher fuel efficiency is considered as USP not only for lower running cost but also is hygiene factor from sustainability point of view. This has necessitated the need for Augmenting Light weighting horizon in automotive OEMs. Augmenting this leads to invention of innovative materials and processes for emerging cost competitive market. This paper focuses on technology efforts towards augmenting light weighting Horizon in Automotive. Light weighting concepts being explored by OEMs with the help of automotive component manufacturers from Powertrain - Engines & Transmission, Chassis and Suspension are discussed.
Journal Article

Body Induced Boom Noise Control by Hybrid Integrated Approach for a Passenger Car

2013-05-13
2013-01-1920
Vehicle incab booming perception, a low frequency response of the structure to the various excitations presents a challenging task for the NVH engineers. The excitation to the structure causing boom can either be power train induced, depending upon the number of cylinders or the road inputs, while transfer paths for the excitation is mainly through the power train mounts or the suspension attachments to the body. The body responds to those input excitations by virtue of the dynamic behavior mainly governed by its modal characteristics. This paper explains in detail an integrated approach, of both experimental and numerical techniques devised to investigate the mechanism for boom noise generation. It is therefore important, to understand the modal behavior of the structure. The modal characteristics from the structural modal test enable to locate the natural frequencies and mode shapes of the body, which are likely to get excited due to the operating excitations.
Technical Paper

Comparative Analysis of P2 and P3 HEV Architectures for Different Vehicle Segments

2024-01-16
2024-26-0284
Climate change due to global warming calls for more fuel-efficient technologies. Parallel Full hybrids are one of the promising technologies to curb the climate change by reducing CO2 emissions significantly. Different parallel hybrid electric vehicle (HEV) architectures such as P0, P1, P2, P3 and P4 are adopted based on different parameters like fuel economy, drivability, performance, packaging, comfort and total cost of ownership of the vehicle. It is a great challenge to select right hybrid architecture for different vehicle segments. This paper compares P2 and P3 HEV with AMT transmission to evaluate most optimized architecture based on vehicle segment. Vehicles selected for study are from popular vehicle segments in India with AMT transmission i.e. Entry segment hatch and Compact SUV. HEV P2 and P3 architectures are simulated and studied with different vehicle segments for fuel economy, performance, drivability and TCO.
Technical Paper

Customized and Market Specific Thermal Robust Clutch System Solution

2021-09-21
2021-01-1239
The goal of reducing fuel consumption and CO2-Emission is leading to turbo-charged combustion engines that deliver high torque at low speeds (down speeding). To meet NVH requirements damper technologies such as DMF (Dual Mass Flywheel) are established, leading to reduced space for the clutch system. Specific measures need to be considered if switching over from SMF (Single Mass Flywheel) to DMF [8]. Doing so has an impact on thermal behavior of the clutch system, for example due to reduced and different distribution of thermal masses and heat transfer to the surroundings. Taking these trends into account, clutch systems within vehicle powertrains are facing challenges to meet requirements e.g. clutch life, cost targets and space limitation. The clutch development process must also ensure delivery of a clutch system that meets requirements taking boundary conditions such as load cycles and driver behavior into account.
Technical Paper

Cyclic Irregularities in Idle and Fuel Delivery Variation of a Rotary Fuel Injection Pump

2004-09-27
2004-32-0056
This paper deals with the problem of cyclic irregularities during idling in relation with port to port fuel delivery variation of rotary Fuel Injection Pump (FIP) for a diesel engine. The relation is demonstrated on a two cylinder engine, where problem of high cyclic irregularities was observed for which the root cause was identified as the fuel delivery variation from the FIP, which was later taken up for the improvements in the design. This paper discusses the technical approach used in identifying the root cause for the high cyclic irregularities and the solution of the problem. It is demonstrated how angular acceleration of the crankshaft free end can be used to diagnose the non-uniformity of combustion in different cylinders which leads to higher cyclic irregularities. The solution discusses the improvements done in the hydraulic passages of the head and rotor of the FIP for line to line fuel delivery variation control.
Technical Paper

Design of Commercial Vehicle Cooling Packages

2008-04-14
2008-01-0264
Optimization of vehicle engine cooling package with requisite heat rejection capacity plays a key role in achieving most fuel economy and also in meeting the stringent noise norms. A set of design and operating features from existing vehicle engine cooling systems is reviewed and evaluated for their potential to provide optimized engine cooling. The features reviewed states significant potential in engine performance but these are balanced by satisfying required engine cooling requirement. Sets of trials are carried out on said vehicle with dissimilar features of cooling packages and the results are evaluated. Fuel economy trials in performance mode are carried out on vehicle with well thought-out cooling package for healthier comparison.
Technical Paper

Development of Cost Effective Non-Permeable and Leak-Proof Air Inlet System Ducting for Turbocharged Intercooled Modern Diesel Engine

2012-04-16
2012-01-0959
The modern trend of engine downsizing for CO₂ reduction coupled with stringent emission norms compel the engine air inlet system to outperform the conventional designs. Modern turbo diesel engine air inlet system handles higher & higher air flow, boost pressure and temperature. Air inlet system ducting designs have become complex due to oil particles (received through PCV system), engine movement and isolation for NVH. Air inlet ducting failures; like oil mist leakage through joints and seepage through hose wall cause high engine oil consumption and most predominantly environment damage. Also to some extent boost leakage in certain operating conditions. These failures reduce the reliability and performance of engine in certain conditions. This paper discusses design and development of cost-effective non-permeable and leak-proof hose-piping system for turbocharged diesel engine where PCV system was connected to air inlet system.
Technical Paper

Development of an Efficient Vehicle Energy Management System for Fuel Cell Electric Vehicles

2024-01-16
2024-26-0173
Fuel cell electric vehicles generally have two power sources – the fuel cell power system and a high voltage battery pack - to power the vehicle operations. The fuel cell power system is the main source of power for the vehicle and its operations are supported by the battery pack. The battery pack helps to tackle the dynamic power demands from the vehicle such as during acceleration, to which the response of the fuel cell might be slower. The battery is also used to recover the energy from regeneration during braking and can also be used to extend the range of the vehicle in case the storage tanks runs out of hydrogen. In order to maximize the fuel efficiency of the fuel cell power system it is critical that these two power sources are used in conjunction with each other in an optimal manner.
Technical Paper

Dynamic Spark Advance Technology for Gasoline Fuel Blends

2024-01-16
2024-26-0074
Fuel efficiency is one of the most important customer requirement in Indian market as well as very crucial to meet the upcoming regulation like CAFÉ for Indian Automotive manufacturers. Most of the technology changes to meet this challenge, always come with a cost penalty with hardware addition. To counter the above challenge, a strategy has been identified in the EMS software that will dynamically adapt the spark timing based on fuel octane rating. This strategy has resulted in fuel efficiency improvement on Modified Indian Drive Cycle on chassis dynamometer test and as well as on real life road tests using fuels with various octane number.
Technical Paper

Experimental Investigation on the Effect of Two Different Multiple Injection Strategies on Emissions, Combustion Noise and Performances of an Automotive CRDI Engine

2016-04-05
2016-01-0871
An emissions, combustion noise and performance study were conducted to explore the effects of two different multiple injections strategies on emissions, combustion noise and performances without altering EGR %. The experiments were done on a six cylinder inline CRDI diesel production engine. The aim of this study is to improve performances (brake specific fuel consumption [BSFC], torque) and combustion noise (reduction) using multiple injection strategies without violating emission regulations. The other objective of this carried-out analysis is to examine the influence of different operating parameters (Speed and Load) and main injection timing combined, on same multiple injection strategies (Pilot- main – after {PMA}and Early - pilot- main –after {EPMA}) by means of analyzing emissions/soot, combustion noise and performances data.
Technical Paper

High Fidelity Modeling and HIL Porting of a Hybrid Electric Car Development

2015-01-14
2015-26-0011
A hybrid electric powertrain being a complex system requires analysis of all its subsystems to optimally utilize, size components for performance evaluation and control strategy development. An integrated high fidelity model of these can lower development costs, time and achieve the targeted performance while allowing for early redefinition of the system. A high fidelity model of a sedan car featuring chassis with longitudinal and lateral dynamics, suspension with joints, tires calculating longitudinal & lateral forces during vehicle motion, Engine model with combustion & dynamics of reciprocating and rotating components, Electric motors, Battery system, and gearbox with synchronizers and friction components was developed. Powertrain components were interconnected using 3D rotational flanges. Weight distribution was accomplished by appropriately locating various powertrain components using 3D supporting mounts, which help to study the mount forces as well.
Technical Paper

Methodology Development to Accurately Predict Aerodynamic Drag and Lift for Passenger Vehicles Using CFD.

2016-04-05
2016-01-1600
Important vehicle performance parameters such as, fuel economy and high speed stability are directly influenced by its aerodynamic drag and lift. Wind tunnel testing to asses these parameters requires heavy investment especially when test wind tunnel is not available in the country where vehicle development center is present. Hence to save cost and to compress development time, it is essential to asses and optimize parameters of a vehicle in very early stages of development. Using numerical flow simulations optimization runs can be carried out digitally. Industry demands prediction of aerodynamic drag and lift coefficients (CD,CL) within an accuracy of a few counts, consuming minimal HPC resources and in a short turnaround time. Different OEMs deploy different testing methods and different softwares for numerical simulations.
Technical Paper

Optimization of Commercial Vehicle Cooling Package for Improvement of Vehicle Fuel Economy

2015-04-14
2015-01-1349
In a heavy commercial vehicle, the engine cooling package is designed by considering peak heat load on the vehicle cooling system from an engine end. In cooling systems, the major unit that consumes most power from the engine is the engine cooling fan. It was seen from the vehicle measured duty cycle data, for most of the time engine operates at part load condition. Regardless of demand from the engine cooling system, engine fan was operating continuously at equivalent speed of the engine. This results in continuous consumption of productive engine power from the fan end ultimately affecting vehicle fuel economy. The present study shows that low idle speed viscous fan has the potential to meet stringent engine cooling performance requirements and consumes less engine power throughout an actual vehicle duty cycle. Experiments were conducted on test vehicle with different fan speeds.
X