Refine Your Search

Topic

Author

Search Results

Technical Paper

5G Network Connectivity Automated Test and Verification for Autonomous Vehicles Using UAVs

2022-03-29
2022-01-0145
The significance and the number of vehicle safety features enabled via connectivity continue to increase. OnStar, with its automatic airbag notification, was one of the first vehicle safety features that demonstrate the enhanced safety benefits of connectivity. Vehicle connectivity benefits have grown to include remote software updates, data analytics to aid with preventative maintenance and even to theft prevention and recovery. All of these services require available and reliable connectivity. However, except for the airbag notification, none have strict latency requirements. For example, software updates can generally be postponed till reliable connectivity is available. Data required for prognostic use cases can be stored and transmitted at a later time. A new set of use cases are emerging that do demand continuous, reliable and low latency connectivity. For example, remote control of autonomous vehicles may be required in unique situations.
Technical Paper

A Frequency Analysis of Semiactive Control Methods for Vehicle Application

2004-05-04
2004-01-2098
The performance of five different skyhook control methods is studied experimentally, using a quarter-car rig. The control methods that are analyzed include: skyhook control, groundhook control, hybrid control, displacement skyhook, and relative displacement skyhook. Upon evaluating the performance of each method in frequency domain for various control conditions, they are compared with each other as well as with passive damping. The results indicate that no one control method outperforms other control methods at both the sprung and unsprung mass natural frequencies. Each method can perform better than the other control methods in some respect. Hybrid control, however, comes close to providing the best compromise between different dynamic demands on a primary suspension. The results indicate that hybrid control can offer benefits to both the sprung and unsprung mass with control gain settings that provide equal contributions from skyhook control and groundhook control.
Journal Article

A High-Resolution Surface Image Capture and Mapping System for Public Roads

2017-03-28
2017-01-0082
This paper presents a system designed to develop a high-resolution map of public roads by capturing high-resolution surface images. Unlike conventional system, the proposed system applies a field programmable gate array (FPGA) to synchronize camera, Inertial Measurement Unit (IMU), and Global Positioning System (GPS) by using FPGA’s high clock frequency and flexibility to multiple devices. The proposed system, which can be mounted on a regular vehicle, contains a Complementary Metal–Oxide–Semiconductor (CMOS) camera which can achieve 0.006 ms shutter speed and 150 fps frame rate. This camera’s high shutter speed and high frame rate can help capturing images with overlapping region at fast driving speed so that no area is missing from road surface image capturing.
Technical Paper

A Methodology for Accounting for Uneven Ride Height in Soft Suspensions with Large Lateral Separation

2009-10-06
2009-01-2920
This study pertains to motion control algorithms using statistical calculations based on relative displacement measurements, in particular where the rattle space is strictly limited by fixed end-stops and a load leveling system that allows for roll to go undetected by the sensors. One such application is the cab suspension of semi trucks that use widely-spaced springs and dampers and a load leveling system that is placed between the suspensions, near the center line of the cab. In such systems it is possible for the suspension on the two sides of the vehicle to settle at different ride heights due to uneven loading or the crown of the road. This paper will compare the use of two moving average signals (one positive and one negative) to the use of one root mean square (RMS) signal, all calculated based on the relative displacement measurement.
Technical Paper

A Multi-Modality Image Data Collection Protocol for Full Body Finite Element Model Development

2009-06-09
2009-01-2261
This study outlines a protocol for image data collection acquired from human volunteers. The data set will serve as the foundation of a consolidated effort to develop the next generation full-body Finite Element Analysis (FEA) models for injury prediction and prevention. The geometry of these models will be based off the anatomy of four individuals meeting extensive prescreening requirements and representing the 5th and 50th percentile female, and the 50th and 95th percentile male. Target values for anthropometry are determined by literature sources. Because of the relative strengths of various modalities commonly in use today in the clinical and engineering worlds, a multi-modality approach is outlined. This approach involves the use of Computed Tomography (CT), upright and closed-bore Magnetic Resonance Imaging (MRI), and external anthropometric measurements.
Technical Paper

A Naturalistic Driving Study for Lane Change Detection and Personalization

2024-04-09
2024-01-2568
Driver Assistance and Autonomous Driving features are becoming nearly ubiquitous in new vehicles. The intent of the Driver Assistant features is to assist the driver in making safer decisions. The intent of Autonomous Driving features is to execute vehicle maneuvers, without human intervention, in a safe manner. The overall goal of Driver Assistance and Autonomous Driving features is to reduce accidents, injuries, and deaths with a comforting driving experience. However, different drivers can react differently to advanced automated driving technology. It is therefore important to consider and improve the adaptability of these advances based on driver behavior. In this paper, a human-centric approach is adopted to provide an enriching driving experience. We perform data analysis of the naturalistic behavior of drivers when performing lane change maneuvers by extracting features from extensive Second Strategic Highway Research Program (SHRP2) data of over 5,400,000 data files.
Technical Paper

A Simplified Battery Model for Hybrid Vehicle Technology Assessment

2007-04-16
2007-01-0301
The objective of this work is to provide a relatively simple battery energy storage and loss model that can be used for technology screening and design/sizing studies of hybrid electric vehicle powertrains. The model dynamic input requires only power demand from the battery terminals (either charging or discharging), and outputs internal battery losses, state-of-charge (SOC), and pack temperature. Measured data from a vehicle validates the model, which achieves reasonable accuracy for current levels up to 100 amps for the size battery tested. At higher current levels, the model tends to report a higher current than what is needed to create the same power level shown through the measured data. Therefore, this battery model is suitable for evaluating hybrid vehicle technology and energy use for part load drive cycles.
Technical Paper

An Artificial Neural Network Model to Predict Tread Pattern-Related Tire Noise

2017-06-05
2017-01-1904
Tire-pavement interaction noise (TPIN) is a dominant source for passenger cars and trucks above 40 km/h and 70 km/h, respectively. TPIN is mainly generated from the interaction between the tire and the pavement. In this paper, twenty-two passenger car radial (PCR) tires of the same size (16 in. radius) but with different tread patterns were tested on a non-porous asphalt pavement. For each tire, the noise data were collected using an on-board sound intensity (OBSI) system at five speeds in the range from 45 to 65 mph (from 72 to 105 km/h). The OBSI system used an optical sensor to record a once-per-revolution signal to monitor the vehicle speed. This signal was also used to perform order tracking analysis to break down the total tire noise into two components: tread pattern-related noise and non-tread pattern-related noise.
Technical Paper

Animal-Vehicle Encounter Naturalistic Driving Data Collection and Photogrammetric Analysis

2016-04-05
2016-01-0124
Animal-vehicle collision (AVC) is a significant safety issue on American roads. Each year approximately 1.5 million AVCs occur in the U.S., the majority of them involving deer. The increasing use of cameras and radar on vehicles provides opportunities for prevention or mitigation of AVCs, particularly those involving deer or other large animals. Developers of such AVC avoidance/mitigation systems require information on the behavior of encountered animals, setting characteristics, and driver response in order to design effective countermeasures. As part of a larger study, naturalistic driving data were collected in high AVC incidence areas using 48 participant-owned vehicles equipped with data acquisition systems (DAS). Continuous driving data including forward video, location information, and vehicle kinematics were recorded. The respective 11TB dataset contains 35k trips covering 360K driving miles.
Technical Paper

Assessment of Heavy Vehicle EDR Technologies

2013-09-24
2013-01-2402
Heavy-vehicle event data recorders (HVEDRs) provide a source of temporal vehicle data just prior to, during, and for a short period after, an event. In the 1990s, heavy-vehicle (HV) engine manufacturers expanded the capabilities of engine control units (ECU) and engine control modules (ECM) to include the ability to record and store small amounts of parametric vehicle data. This advanced capability has had a significant impact on vehicle safety by helping law enforcement, engineers, and researchers reconstruct events of a vehicle crash and understand the details surrounding that vehicle crash. Today, EDR technologies have been incorporated into a wide range of heavy vehicle (HV) safety systems (e.g., crash mitigation systems, air bag control systems, and behavioral monitoring systems). However, the adoption of EDR technologies has not been uniform across all classes of HVs or their associated vehicle systems.
Technical Paper

Avoiding the Pitfalls in Motorsports Data Acquisition

2008-12-02
2008-01-2987
Restrictions on track testing, combined with advances in technology, have contributed to an increased dependence on sensors and data acquisition for diagnosing problems and improving performance in motorsports vehicles. This dependence has created a new set of challenges for race engineers to collect quality data from a vehicle at the track. Successful 7- or 8-post shaker rig testing is highly dependent on the quality of the data acquired at the track. An improperly configured data acquisition system can actually be worse than a faulty sensor. This paper highlights a few of the most common problems in motorsports data acquisition: aliasing and sample rate selection. The effects of these problems are described for typical suspension sensors such as accelerometers, shock potentiometers, load cells, and laser ride height sensors. An experimental case study is presented to explain the implications of these problems.
Journal Article

Battery Charge Balance and Correction Issues in Hybrid Electric Vehicles for Individual Phases of Certification Dynamometer Driving Cycles as Used in EPA Fuel Economy Label Calculations

2012-04-16
2012-01-1006
This study undertakes an investigation of the effect of battery charge balance in hybrid electric vehicles (HEVs) on EPA fuel economy label values. EPA's updated method was fully implemented in 2011 and uses equations which weight the contributions of fuel consumption results from multiple dynamometer tests to synthesize city and highway estimates that reflect average U.S. driving patterns. For the US06 and UDDS cycles, the test results used in the computation come from individual phases within the overall certification driving cycles. This methodology causes additional complexities for hybrid vehicles, because although they are required to be charge-balanced over the course of a full drive cycle, they may have net charge or discharge within the individual phases. As a result, the fuel consumption value used in the label value calculation can be skewed.
Technical Paper

Closed Loop Transaxle Synchronization Control Design

2010-04-12
2010-01-0817
This paper covers the development of a closed loop transaxle synchronization algorithm which was a key deliverable in the control system design for the L3 Enigma, a Battery Dominant Hybrid Electric Vehicle. Background information is provided to help the reader understand the history that lead to this unique solution of the input and output shaft synchronizing that typically takes place in a manual vehicle transmission or transaxle when shifting into a gear from another or into a gear from neutral when at speed. The algorithm stability is discussed as it applies to system stability and how stability impacts the speed at which a shift can take place. Results are simulated in The MathWorks Simulink programming environment and show how traction motor technology can be used to efficiently solve what is often a machine design issue. The vehicle test bed to which this research is applied is a parallel biodiesel hybrid electric vehicle called the Enigma.
Technical Paper

Conceptual Design and Weight Optimization of Aircraft Power Systems with High-Peak Pulsed Power Loads

2016-09-20
2016-01-1986
The more electric aircraft (MEA) concept has gained popularity in recent years. As the main building blocks of advanced aircraft power systems, multi-converter power electronic systems have advantages in reliability, efficiency and weight reduction. The pulsed power load has been increasingly adopted--especially in military applications--and has demonstrated highly nonlinear characteristics. Consequently, more design effort needs to be placed on power conversion units and energy storage systems dealing with this challenging mission profile: when the load is on, a large amount of power is fed from the power supply system, and this is followed by periods of low power consumption, during which time the energy storage devices get charged. Thus, in order to maintain the weight advantage of MEA and to keep the normal functionality of the aircraft power system in the presence of a high-peak pulsed power load, this paper proposes a novel multidisciplinary weight optimization technique.
Technical Paper

Control Strategy Development for Parallel Plug-In Hybrid Electric Vehicle Using Fuzzy Control Logic

2016-10-17
2016-01-2222
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is currently developing a control strategy for a parallel plug-in hybrid electric vehicle (PHEV). The hybrid powertrain is being implemented in a 2016 Chevrolet Camaro for the EcoCAR 3 competition. Fuzzy rule sets determine the torque split between the motor and the engine using the accelerator pedal position, vehicle speed and state of charge (SOC) as the input variables. The torque producing components are a 280 kW V8 L83 engine with active fuel management (AFM) and a post-transmission (P3) 100 kW custom motor. The vehicle operates in charge depleting (CD) and charge sustaining (CS) modes. In CD mode, the model drives as an electric vehicle (EV) and depletes the battery pack till a lower state of charge threshold is reached. Then CS operation begins, and driver demand is supplied by the engine operating in V8 or AFM modes with supplemental or loading torque from the P3 motor.
Technical Paper

Development & Integration of a Charge Sustaining Control Strategy for a Series-Parallel Plug-In Hybrid Electric Vehicle

2014-10-13
2014-01-2905
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2012-2014 EcoCAR 2: Plugging in to the Future Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM) and the U.S. Department of Energy (DOE). The goals of the competition are to reduce well-to-wheel (WTW) petroleum energy consumption (PEU), WTW greenhouse gas (GHG) and criteria emissions while maintaining vehicle performance, consumer acceptability and safety. Following the EcoCAR 2 Vehicle Development Process (VDP), HEVT is designing, building, and refining an advanced technology vehicle over the course of the three year competition using a 2013 Chevrolet Malibu donated by GM as a base vehicle.
Technical Paper

Development and Validation of an E85 Split Parallel E-REV

2011-04-12
2011-01-0912
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2009 - 2011 EcoCAR: The NeXt Challenge Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM), and the U.S. Department of Energy (DOE). Following GM's Vehicle Development Process (VDP), HEVT established team goals that meet or exceed the competition requirements for EcoCAR in the design of a plug-in extended-range hybrid electric vehicle. The competition requires participating teams to improve and redesign a stock Vue XE donated by GM. The result of this design process is an Extended-Range Electric Vehicle (E-REV) that uses grid electric energy and E85 fuel for propulsion. The vehicle design is predicted to achieve an SAE J1711 utility factor corrected fuel consumption of 2.9 L(ge)/100 km (82 mpgge) with an estimated all electric range of 69 km (43 miles) [1].
Technical Paper

Development of a Plug-In Hybrid Electric Vehicle Control Strategy Employing Software-In-the-Loop Techniques

2013-04-08
2013-01-0160
In an age of growing complexity with regards to vehicle control systems, verification and validation of control algorithms is a rigorous and time consuming process. With the help of rapid control prototyping techniques, designers and developers have cost effective ways of validating controls under a quicker time frame. These techniques involve developments of plant models that replicate the systems that a control algorithm will interface with. These developments help to reduce costs associated with construction of prototypes. In standard design cycles, iterations were needed on prototypes in order to finalize systems. These iterations could result in code changes, new interfacing, and reconstruction, among other issues. The time and resources required to complete these were far beyond desired. With the help of simulated interfaces, many of these issues can be recognized prior to physical integration.
Technical Paper

Does the Interaction between Vehicle Headlamps and Roadway Lighting Affect Visibility? A Study of Pedestrian and Object Contrast

2020-04-14
2020-01-0569
Vehicle headlamps and roadway lighting are the major sources of illumination at night. These sources affect contrast - defined as the luminance difference of an object from its background - which drives visibility at night. However, the combined effect of vehicle headlamps and intersection lighting on object contrast has not been reported previously. In this study, the interactive effects of vehicle headlamps and overhead lighting on object contrast were explored based on earlier work that examined drivers’ visibility under three intersection lighting designs (illuminated approach, illuminated box, and illuminated approach + box). The goals of this study were to: 1) quantify object luminance and contrast as a function of a vehicle’s headlamps and its distance to an intersection using the three lighting designs; and, 2) to assess whether contrast influences visual performance and perceived visibility in a highly dynamic intersection environment.
Technical Paper

ESS Design Process Overview and Key Outcomes of Year Two of EcoCAR 2: Plugging in to the Future

2014-04-01
2014-01-1922
EcoCAR 2: Plugging in to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 30 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The EcoCAR 2 VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles.
X