Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Analysis of the Correlation between Driver's Visual Features and Driver Intention

2019-04-02
2019-01-1229
Driver behaviors provide abundant information and feedback for future Advanced Driver Assistance Systems (ADAS). Driver’s eye and head may present some typical movement patterns before executing driving maneuvers. It is possible to use driver’s head and eye movement information for predicting driver intention. Therefore, to determine the most important features related to driver intention has attracted widespread research interests. In this paper, a method to analyze the correlation between driver’s visual features and driver intention is proposed, aiming to determine the most representative features for driver intention prediction. Firstly, naturalistic driving experiment is conducted to collect driver’s videos during executing lane keeping and lane change maneuvers. Then, driver’s head and face visual features are extracted from those videos. By using boxplot and independent samples T-test, features which have significant correlation with driver intention are found.
Technical Paper

Ride Comfort Analysis of Seated Occupants Based on an Integrated Vehicle-Human Dynamic Model

2023-04-11
2023-01-0914
Low-frequency vibration caused by road roughness while driving is transmitted to the human body through tires, suspension, and seats. Prolonged exposure of the human body to the vibratory environment will have an impact on ride comfort or even health issues. In order to investigate the vibration response of various segments of occupants while driving, a 15-DOF multi-body dynamic model depicting the shanks with feet, thighs, pelvis, torso with arms, and the head of occupants is established in the two-dimensional sagittal plane, which considers the contact between the occupant and the cushion, backrest headrest, and the vehicle floor simultaneously. The biodynamic parameters are obtained by fitting the published vibration experimental data based on an optimization algorithm. The previously proposed half-car model is incorporated into the human model to construct an integrated vehicle-human model for further ride comfort analysis.
X