Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

A Lattice Boltzmann Simulation of Gas Purge in Flow Channel with Real GDL Surface Characteristics for Proton Exchange Membrane Fuel Cell

2019-04-02
2019-01-0389
Gas purge is considered as an essential shutdown process for a PEMFC (Proton Exchange Membrane Fuel Cell), especially in subfreezing temperature. The water flooding phenomenon inside fuel cell flow channel have a marked impact on performance in normal operating condition. In addition, the residual water freezes in the subzero temperature, thus blocking the mass transfer from flow channel to porous media. Therefore, the gas purge course is of primary importance for improvement of performance and durability. The water droplet residing in the flow channel can be purged out due to shearing force of gas. In fact, the flow channel is not completely flat due to surface roughness of gas diffusion layer (GDL), meaning the water droplet may climb over obstacles. Moreover, the water droplet may block the flow channel and then be sheared into films on the surface of GDL.
Technical Paper

Adjoint-Based Model Tuning and Machine Learning Strategy for Turbulence Model Improvement

2022-03-29
2022-01-0899
As turbulence modeling has become an indispensable approach to perform flow simulation in a wide range of industrial applications, how to enhance the prediction accuracy has gained increasing attention during the past years. Of all the turbulence models, RANS is the most common choice for many OEMs due to its short turn-around time and strong robustness. However, the default setting of RANS is usually benchmarked through classical and well-studied engineering examples, not always suitable for resolving complex flows in specific circumstances. Many previous researches have suggested a small tuning in turbulence model coefficients could achieve higher accuracy on a variety of flow scenarios. Instead of adjusting parameters by trial and error from experience, this paper introduced a new data-driven method of turbulence model recalibration using adjoint solver, based on Generalized k-ω (GEKO) model, one variant of RANS.
Technical Paper

Design and Structural Parameters Analysis of the Centrifugal Compressor for Automotive Fuel Cell System Based on CFD Method

2023-04-11
2023-01-0499
Electric centrifugal air compressor is one of the most important auxiliary components for the fuel cell engine, which has great impacts on the system efficiency, cost and compactness. However, the centrifugal compressor works at an ultra-high speed for a long time, which poses a great challenge to the lives of motor, bearing and seal. Therefore, reducing the rotating speed of the impeller and maintaining high pressure ratio and high efficiency are important issues for aerodynamic design of the compressor. In this paper, a centrifugal compressor rotor for a 100kW fuel cell system is designed. Aiming at reducing the rotating speed, the influences of three key structural parameters including inlet blade angle, outlet blade angle and blade outlet radius on performance are investigated. The aerodynamic performance of the compressor is predicted using the Reynolds-averaged Navier-Stokes (RANS) equations with computational fluid dynamic (CFD) tools.
Technical Paper

Design and Structural Parameters Analysis of the Turbine Rotor in Fuel Cell Vehicle

2021-04-06
2021-01-0729
As the most power-consuming component of the fuel cell system, the compressor directly affects the efficiency of the system. Using turbines to recover energy from the exhaust gas, has become a feasible means to improve the fuel cell system’s efficiency. Previous designs are mainly based on high-temperature (>523.15 K) gas. However, the exhaust gas temperature of the proton exchange membrane fuel cell is only about 348.15 K, which is much lower than the working fluid temperature of typical turbines (such as those used in internal combustion engine). In this paper, a turbine rotor for a 100kW fuel cell system was designed. The influences of non-design structural parameters including blade inlet incline angle, blade thickness, blade tip clearance and blade number on the aerodynamic performance and internal flow of the rotor are investigated. Computational fluid dynamic (CFD) model of the rotor single flow is established to predict the turbine aerodynamic performance.
Technical Paper

Influence of Distributing Channel Configuration and Geometric Parameters on Flow Uniformity in Straight Flow-Field of PEM Fuel Cell

2020-04-14
2020-01-1173
Gas distribution of proton exchange membrane fuel cells (PEMFCs) is mainly decided by flow field of bipolar plate. The improper design of distributing channel, nonuniform gas flow distribution and current density distribution among different straight channels are the leading factors that could tremendously undermine the performance and life expectancy of the cell. However, there is lack of research focusing on distributing channel in straight-parallel flow field. In this work, a three-dimensional numerical model of PEMFC cathode flow field is developed with CFD method to investigate the effects of configuration type and width of the distributing channel on pressure distribution in distributing channel and on reactant flow distribution, pressure drop and concentration distribution in multiple straight channel. Effects of electrochemical reaction and formation of water on the flow distribution are taken into consideration.
Technical Paper

Investigation on Cold Start for Proton Exchange Membrane Fuel Cell Stack

2021-04-06
2021-01-0738
Cold start remains a major obstacle to the commercialization of proton exchange membrane fuel cell (PEMFC), however, there are few studies on the cold start characteristics, especially at a complicated stack level. In this study, a novel layer-lumped numerical model with higher computational efficiency is proposed to investigate the cold start behavior of PEMFC stack, in which phase transition, heat transfer and electrochemical reaction are comprehensively considered. Besides, phase transition mechanisms are reconstructed based on the assumption that super-cooled water exists within the cell. With this model, the inconsistency of the stack temperature distribution and output performance is presented, some constant loading voltage strategies are investigated, and a linear variable controlling voltage strategy is developed.
Journal Article

Numerical Models for PEMFC Cold Start: A Review

2017-03-28
2017-01-1182
Startup from subzero temperature is one of the major challenges for polymer electrolyte membrane fuel cell (PEMFC) to realize commercialization. Below the freezing point (0°C), water will freeze easily, which blocks the reactant gases into the reaction sites, thus leading to the start failure and material degradation. Therefore, for PEMFC in vehicle application, finding suitable ways to reach successful startup from subfreezing environment is a prerequisite. As it’s difficult and complex for experimental studies to measure the internal quantities, mathematical models are the effective ways to study the detailed transport process and physical phenomenon, which make it possible to achieve detailed prediction of the inner life of the cell. However, review papers only on cold start numerical models are not available. In this study, an extensive review on cold start models is summarized featuring the states and phase changes of water, heat and mass transfer.
X