Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Analysis and Design of Suspension State Observer for Wheel Load Estimation

2024-04-09
2024-01-2285
Tire forces and moments play an important role in vehicle dynamics and safety. X-by-wire chassis components including active suspension, electronic powered steering, by-wire braking, etc can take the tire forces as inputs to improve vehicle’s dynamic performance. In order to measure the accurate dynamic wheel load, most of the researches focused on the kinematic parameters such as body longitudinal and lateral acceleration, load transfer and etc. In this paper, the authors focus on the suspension system, avoiding the dependence on accurate mass and aerodynamics model of the whole vehicle. The geometry of the suspension is equated by the spatial parallel mechanism model (RSSR model), which improves the calculation speed while ensuring the accuracy. A suspension force observer is created, which contains parameters including spring damper compression length, push rod force, knuckle accelerations, etc., combing the kinematic and dynamic characteristic of the vehicle.
Technical Paper

Cold Start Emission Characteristics of Diesel Engine at High Altitude and Low Temperature

2022-03-29
2022-01-0563
The diesel engine is the core in the field of engineering machine power plants. While both at home and abroad for the cold start of diesel engine, the transient emission characteristics below 0 °C and above 2000m is almost a blank. Therefore, aimed at high altitude and low-temperature environment emission characteristics of cold start, this article has carried on the systematic analysis and research. In this paper, a simulation test system for the cold start of the diesel engine at low temperature at high altitude is established. The cold start experiments of a heavy diesel engine at different ambient temperatures (10°C, 0°C, -10°C and -20°C) and different altitudes (0m, 3000m, and 4000m) is carried out. In this paper, the gas emission of the diesel engine during the speed-up period of cold start is studied.
Technical Paper

Cold Start Performance and Combustion Characteristics of Diesel Engine at Low Temperature and High Altitude

2022-03-29
2022-01-0444
Diesel engine starts stably under extreme conditions of high altitude and low ambient temperature, which is of great significance to national economic development, national defense force and user safety. However, there are few studies on cold start performance and transient emission of diesel engines with ambient temperature below 0°C and altitude above 2000m. A simulation test system for high altitude and low temperature cold start of diesel engine is established in this paper. The cold start-up of a high-pressure common rail turbocharged heavy diesel engine discharged from the fifth stage in China at altitudes of 0m, 3000m and 4000m at 10°C, 0°C, -10°C and -20°C is studied. The ignition mechanism of diesel engine at high altitude and low temperature is put forward. The combustion characteristics of diesel engine at variable altitude and ambient temperature were studied.
Technical Paper

Decision-Making for Intelligent Vehicle Considering Uncertainty of Road Adhesion Coefficient Estimation: Autonomous Emergency Braking Case

2020-10-29
2020-01-5109
Since data processing methods could not completely eliminate the uncertainty of signals, it is a key issue for stable and robust decision-making for uncertainty tolerance of intelligent vehicles. In this paper, a decision-making for an Autonomous Emergency Braking (AEB) case considering the uncertainty of road adhesion coefficient estimation (RACE) is proposed. Firstly, the 3σ criterion is employed to classify the confidence in order to establish the decision-making mechanism considering the signal uncertainty of RACE. Secondly, the model for AEB with the uncertainty of the road adhesion coefficient estimated is designed based on the Seungwuk Moon model. Thirdly, a CCRs and CCRm scenario was designed to verify the feasibility in reference to the European New Car Assessment Programme (Euro NCAP) standard. Finally, the results of 10,000 cycles test illustrate that the proposed method is stable and could significantly improve the safety confidence both in the CCRs and CCRm scenarios.
Technical Paper

Intelligent Cockpit Operation System: Indirect Rotary Transducer for an Automotive Screen Interface

2022-05-30
2022-01-5034
Indirect rotary transducer for an automotive screen interface is an innovative solution for the smart cockpit. The primary objective of this study is to design an indirect rotary transducer system, and study its feasibility in the smart cockpit. The working theory of this designed system is that the magnetic induction hall electronic chip can detect changes in the magnetic field. Several tests have been conducted, which show that the hypothesis of dangling operating system achieves the same effect as a hard-wired operating system. The results of the experiment indicate that the magnetic induction hall sensor can meet the specification of traditional hard-wired operating system. This system is a good concept for intelligent cab driving, which can fully meet the needs of the current market.
Technical Paper

Optimization of Cold Start Performance of Diesel Engine Under Low Temperature and High Altitude Environment

2024-04-09
2024-01-2455
The problem of keeping the stable starting performance of diesel engine under high altitude and low temperature conditions has been done a lot of research in the field of diesel engine, but there is a lack of research on extreme conditions such as above 2000 meters above sea level and below 0°C. Aiming at solving the cold start problem of diesel engine in extreme environment, a set of chamber system of cold start environment diesel engine was constructed to simulate environment of 3000m altitude and -20°C. A series of experimental research was conducted on cold start efficiency optimization strategy of a certain type of diesel engine at 3000m altitude and -20°C. In parallel, a diesel engine model was constructed through Chemkin to explore the influence of the three parameters of compression ratio, stroke length, and fuel injection advance angle on the first cold start cycle of diesel engine at 4000m altitude and -20°C.
Technical Paper

Performance Analysis of Fuel Cells for High Altitude Long Flight Multi-rotor Drones

2024-04-09
2024-01-2177
In recent years, the burgeoning applications of hydrogen fuel cells have ignited a growing trend in their integration within the transportation sector, with a particular focus on their potential use in multi-rotor drones. The heightened mass-based energy density of fuel cells positions them as promising alternatives to current lithium battery-powered drones, especially as the demand for extended flight durations increases. This article undertakes a comprehensive exploration, comparing the performance of lithium batteries against air-cooled fuel cells, specifically within the context of multi-rotor drones with a 3.5kW power requirement. The study reveals that, for the specified power demand, air-cooled fuel cells outperform lithium batteries, establishing them as a more efficient solution.
X