Refine Your Search

Topic

Search Results

Technical Paper

A Comparative Study on Energy Management Strategies for an Automotive Range-Extender Electric Powertrain

2021-12-31
2021-01-7027
In this work, the influences of various real-timely available energy management strategies on vehicle fuel consumption (VFC) and energy flow of a range-extender electric vehicle were studied The strategies include single-point, multi-point, speed-following, and equivalent consumption minimization strategy. In addition, the dynamic programming method which cannot be used in real time, but can provide the optimal solution for a known drive situation was used for comparison. VFCs and energy flow characteristics with different strategies under Worldwide Harmonized Light Vehicles Test Cycle (WLTC) were obtained through computer modeling, and the results were verified experimentally on a range-extender test bench. The experimental results are consistent with the modeled ones in general with a maximum deviation of 4.11%, which verifies the accuracy of the simulation models.
Technical Paper

A Lithium-Ion Battery Optimized Equivalent Circuit Model based on Electrochemical Impedance Spectroscopy

2015-04-14
2015-01-1191
An electrochemical impedance spectroscopy battery model based on the porous electrode theory is used in the paper, which can comprehensively depict the internal state of the battery. The effect of battery key parameters (the radius of particle, electrochemical reaction rate constant, solid/electrolyte diffusion coefficient, conductivity) to the simulated impedance spectroscopy are discussed. Based on the EIS analysis, a lithium-ion battery optimized equivalent circuit model is built. The parameters in the equivalent circuit model have more clear physical meaning. The reliability of the optimized equivalent circuit model is verified by compared the model and experiments. The relationship between the external condition and internal resistance could be studied according to the optimized equivalent circuit model. Thus the internal process of the power battery is better understood.
Technical Paper

A Novel Battery Impedance Model Considering Internal Temperature Gradient

2018-04-03
2018-01-0436
Battery models are often applied to describe the dynamic characteristics of batteries and can be used to predict the state of the battery. Due to the process of charging and discharging, the battery heat generation will cause the inhomogeneity between inner battery temperature and surface temperature. In this paper, a novel battery impedance model, which takes the impact of the battery internal temperature gradient on battery impedance into account, is proposed to improve the battery model performance. Several experiments are designed and conducted for pouch typed battery to investigate the electrochemical impedance spectroscopy (EIS) characteristics with the artificial temperature gradient (using a heating plate). Experimental results indicate that the battery internal temperature gradient will influence battery EIS regularly.
Journal Article

A Novel ZSB-PAM Power Regulation Method Applied in Wireless Charging System for Vehicular Power Batteries

2015-04-14
2015-01-1194
Wireless charging system for vehicular power batteries is becoming more and more popular. As one of important issues, charging power regulation is indispensable for online control, especially when the distance or angle between chassis and ground changes. This paper proposes a novel power regulation method named Z-Source-Based Pulse-Amplitude-Modulation (ZSB-PAM), which has not been mentioned in the literatures yet. The ZSB-PAM employs a unique impedance network (two pairs of inductors and capacitors connected in X shape) to couple the cascaded H Bridge to the power source. By controlling the shoot-through state of H bridge, the input voltage to H bridge can be boosted, thus the transmitter current can be adjusted, and hence, charging current and power for batteries. A LCL-LCL resonant topology is adopted as the main transfer energy carrier, for it can work with a unity power factor and have the current source characteristic which is suitable for battery charging.
Technical Paper

A Road Load Data Processing Method for Transmission Durability Optimization Development

2020-04-14
2020-01-1062
With increasing pressure from environment problem for reduction in CO2 emissions and stricter fuel targets from road vehicles, new transmission technologies are gaining more attention in different main market. To get suitable road load data for transmission durability development is becoming increasingly important and can shorten the development time of new transmission. This paper presents the procedure and methods of road load data development for durability design of transmission product and optimization based on the real road data measurement, statistical characteristics evaluation and fatigue damage equivalency. Apply this road load data method procedure on 3 type of vehicle which represent conventional vehicle, BEV and HEV.
Technical Paper

A Steerable Curvature Approach for Efficient Executable Path Planning for on-Road Autonomous Vehicle

2019-04-02
2019-01-0675
A rapid path-planning algorithm that generates drivable paths for an autonomous vehicle operating in structural road is proposed in this paper. Cubic B-spline curve is adopted to generating smooth path for continuous curvature and, more, parametric basic points of the spline is adjusted to controlling the curvature extremum for kinematic constraints on vehicle. Other than previous approaches such as inverse kinematics, model-based prediction postprocess approach or closed-loop forward simulation, using the kinematics model in each iteration of path for smoothing and controlling curvature leading to time consumption increasing, our method characterized the vehicle curvature constraint by the minimum length of segment line, which synchronously realized constraint and smooth for generating path. And Differ from the path of robot escaping from a maze, the intelligent vehicle traveling on road in structured environments needs to meet the traffic rules.
Technical Paper

A Study of Parameter Inconsistency Evolution Pattern in Parallel-Connected Battery Modules

2017-03-28
2017-01-1194
Parallel-connected modules have been widely used in battery packs for electric vehicles nowadays. Unlike series-connected modules, the direct state inconsistency caused by parameter inconsistency in parallel modules is current and temperature non-uniformity, thus resulting in the inconsistency in the speed of aging among cells. Consequently, the evolution pattern of parameter inconsistency is different from that of series-connected modules. Since it’s practically impossible to monitor each cell’s current and temperature information in battery packs, considering cost and energy efficiency, it’s necessary to study how the parameter inconsistency evolves in parallel modules considering the initial parameter distribution, topology design and working condition. In this study, we assigned cells of 18650 format into several groups regarding the degree of capacity and resistance inconsistency. Then all groups are cycled under different environmental temperature and current profile.
Technical Paper

A Systematic Scenario Typology for Automated Vehicles Based on China-FOT

2018-04-03
2018-01-0039
To promote the development of automated vehicles (AVs), large scale of field operational tests (FOTs) were carried out around the world. Applications of naturalistic driving data should base on correlative scenarios. However, most of the existing scenario typologies, aiming at advanced driving assistance system (ADAS) and extracting discontinuous fragments from driving process, are not suitable for AVs, which need to complete continuous driving tasks. In this paper, a systematic scenario-typology consisting of four layers (from top to bottom: trip, cluster, segment and process) was first proposed. A trip refers to the whole duration from starting at initial parking space to parking at final one. The basic units ‘Process’, during which the vehicle fulfils only one driving task, are classified into parking process, long-, middle- and short-time-driving-processes. A segment consists of two neighboring long-time-driving processes and a middle or/and short one between them.
Journal Article

Adhesion Control Method Based on Fuzzy Logic Control for Four-Wheel Driven Electric Vehicle

2010-04-12
2010-01-0109
The adhesion control is the basic technology of active safety for the four-wheel driven EV. In this paper, a novel adhesion control method based on fuzzy logic control is proposed. The control system can maximize the adhesion force without road condition information and vehicle speed signal. Also, the regulation torque to prevent wheel slip is smooth and the vehicle driving comfort is greatly improved. For implementation, only the rotating speed of the driving wheel and the motor driving torque signals are needed, while the derived information of the wheel acceleration and the skid status are used. The simulation and road test results have shown that the adhesion control method is effective for preventing slip and lock on the slippery road condition.
Technical Paper

Analysis and Redesign of Connection Part in Cargo Truck Chassis for Fatigue Durability Performance

2023-04-11
2023-01-0599
With the growing prosperity of the long-distance freight and urban logistics industry, the demand for cargo trucks is gradually increasing. The connecting bracket is the critical connecting part of the truck chassis, which bears the load transmitted by the road excitation and reduces the damage to the frame caused by the load. However, the occurrence of rough road conditions is inevitable in heavy-duty transportation. In this paper, road durability tests and fatigue life analysis are carried out on the original structure to ensure the safety of the vehicle. Based on the known boundary and load constraints, a lightweight and high-performance structure is obtained through size optimization, as the original structure cannot meet the performance requirements. Firstly, the road test was conducted on the truck where the original bracket structure is located.
Technical Paper

Analysis under Vehicle-Pedalcyclist Risk Scenario Based on Comparison between Real Accident and Naturalistic Driving Data

2018-04-03
2018-01-1048
This paper constructs the Accident Crash Scenarios(ACSs) classification system based on the traffic accident data collected by the traffic management department in a Chinses city from 2013 to 2015. The classification system selects four influenced variables on the basis of Critical Driving Scenarios(CDSs) in Naturalistic Driving Data. The proportions of each variable are analyzed, and all ACSs are divided into 48 scenarios. The highest proportion of nine ACSs are extracted from all 10596 ACSs, and the result shows the ACSs involved Car-Pedalcyclist occupy the top four scenarios, and the scenarios involved intersection situations are worth attention. Pedalcyclists include bicyclists, motorcyclists, tri-cyclists and electric bicyclists. Multivariate Logistic Regression(MLR) analysis is then used to study the ACSs involved the type of Car-Pedalcyclist.
Technical Paper

Bi-Directional Equalization System for Li-Ion Battery Pack Based on Fly-back Transformer

2018-04-03
2018-01-0442
For balancing Li-ion battery cells connected in series and effectively improving the consistency of the cells, a bi-directional equalization system based on fly-back transformer is proposed. Unlike the passive equalization technology using a resistor or active equalization with expensive DC-DC converter for the balancing among the cells, this equalization circuit consists of the fly-back transformer and RCD circuit, which can easily and cheaply realize the energy transfer between the whole battery module and the cells, and thus achieving bidirectional equalization. In this system, both the primary side and the secondary side of multi-winding transformer are connected to a MOSFET. All MOSFETs are controlled by the PWM signal. The control timing and duty ratio of the PWM control signal are determined through the simulation analysis. Meanwhile, an RCD circuit is applied at the primary side of multi-winding transformer for buffering the peak voltage caused by leakage inductance.
Technical Paper

Comparative Thermal Runaway Behavior Analysis of High-Nickel Lithium-Ion Batteries with Different Specifications

2022-03-29
2022-01-0706
High-nickel lithium-ion batteries extend the driving mileage of electric vehicles (EVs) to 600km without much cost increment. However, thermal accidents commonly occur due to their poor thermal stability, such as thermal runaway. To address the issue, a comprehensive analysis of the thermal runaway behavior of high-nickel lithium-ion batteries with different specifications is conducted. The thermal runaway process is divided into five stages based on self-heating generation, voltage drop, safety valve rupture, and thermal runaway triggering for the three tested cells. The three tested cells demonstrate similar behaviors during each stage of the thermal runaway process. However, there are still apparent differences between their characteristics. This study analyses the thermal runaway features from the following aspects: (i) characteristic temperature; (ii) the relationship between sudden voltage drop and characteristic temperatures; (iii) temperature recovery; (iv) thermodynamics.
Technical Paper

Comparison of Different Energy Storage Systems for Range-Extended Electric Urban Bus

2016-09-27
2016-01-8093
Recent years, electric vehicles (EVs) have been widely used as urban transit buses in China, but high costs and a dwindling driving distance caused mainly by relatively frequent usage rate have put the electric bus in a difficult position. Range-extended electric bus (REEbus) is taken as an ideal transitional powertrain configuration, but its efficiency is not so high. Besides, with less batteries to endure more frequently charging and discharging, the lifecycle of battery pack can also be shorten. Aiming at it, range-extended electric powertrains with diverse energy storage systems (ESSs) and proper auxiliary power unit (APU) control strategies are matched and compared to find most proper ESS configuration for REEbus through simulation, which is based on a 12 meter-long urban bus.
Technical Paper

Comprehensively Investigating the Impact of High-Temperature Cyclic Aging on Thermal Runaway Characteristics for Lithium-Ion Batteries

2022-10-28
2022-01-7061
Battery safety issues have severely limited the rapid development and popularization of electric vehicles. Harsh conditions such as high temperature accelerate the degradation of battery safety. To address this issue, a comprehensive analysis of the impact of high-temperature cyclic aging on lithium-ion battery safety is carried out. In the Accelerating Rate Calorimeter, lithium-ion batteries are performed on adiabatic thermal runaway tests and overcharge tests. Regardless of the fully-charged state or half-charged state, in the adiabatic thermal runaway process, high-temperature cyclic aging reduces the characteristic temperature, and the activation energy from the self-heating temperature to thermal runaway triggering temperature decreases. During the overcharge process, high-temperature cyclic aging increases the voltage plateau and the crest voltage before thermal runaway, and their corresponding charging temperature decreases.
Technical Paper

Cooperative Lane Change Control Based on Null-Space-Behavior for a Dual-Column Intelligent Vehicle Platoon

2023-12-20
2023-01-7064
With the extension of intelligent vehicles from individual intelligence to group intelligence, intelligent vehicle platoons on intercity highways are important for saving transportation costs, improving transportation efficiency and road utilization, ensuring traffic safety, and utilizing local traffic intelligence [1]. However, there are several problems associated with vehicle platoons including complicated vehicle driving conditions in or between platoon columns, a high degree of mutual influence, dynamic optimization of the platoon, and difficulty in the cooperative control of lane change. Aiming at the dual-column intelligent vehicle platoon control (where “dual-column” refers to the vehicle platoon driving mode formed by multiple vehicles traveling in parallel on two adjacent lanes), a multi-agent model as well as a cooperative control method for lane change based on null space behavior (NSB) for unmanned platoon vehicles are established in this paper.
Technical Paper

Coordinated Charging and Dispatching for Large-Scale Electric Taxi Fleets Based on Bi-Level Spatiotemporal Optimization

2024-04-09
2024-01-2880
The operation management of electric Taxi fleets requires cooperative optimization of Charging and Dispatching. The challenge is to make real-time decisions about which is the optimal charging station or passenger for each vehicle in the fleet. With the rapid advancement of Vehicle Internet of Things (VIOT) technologies, the aforementioned challenge can be readily addressed by leveraging big data analytics and machine learning algorithms, thereby contributing to smarter transportation systems. This study focuses on optimizing real-time decision-making for charging and dispatching in large-scale electric taxi fleets to improve their long-term benefits. To achieve this goal, a spatiotemporal decision framework using Bi-level optimization is proposed. Initially, a deep reinforcement learning-based model is built to estimate the value of charging and order dispatching under uncertainty.
Technical Paper

Design and Research of Micro EV Driven by In-Wheel Motors on Rear Axle

2016-09-18
2016-01-1950
As is known to all, the structure of the chassis has been greatly simplified as the application of in-wheel motor in electric vehicle (EV) and distributed control is allowed. The micro EV can alleviate traffic jams, reduce the demand for motor and battery capacity due to its small size and light weight and accordingly solve the problem that in-wheel motor is limited by inner space of the wheel hub. As a result, this type of micro EV is easier to be recognized by the market. In the micro EV above, two seats are side by side and the battery is placed in the middle of the chassis. Besides, in-wheel motors are mounted on the rear axle and only front axle retains traditional hydraulic braking system. Based on this driving/braking system, distribution of braking torque, system reliability and braking intensity is analyzed in this paper.
Journal Article

Design and Thermal Analysis of a Passive Thermal Management System Using Composite Phase Change Material for Rectangular Power Batteries

2015-04-14
2015-01-0254
A passive thermal management system (TMS) using composite phase change material (PCM) for large-capacity, rectangular lithium-ion batteries is designed. A battery module consisting of six Li-ion cells connected in series was investigated as a basic unit. The passive TMS for the module has three configurations according to the contact area between cells and the composite PCM, i.e., surrounding, front-contacted and side-contacted schemes. Firstly, heat generation rate of the battery cell was calculated using the Bernardi equation based on experimentally measured heat source terms (i.e. the internal resistance and the entropy coefficient). Physical and thermal properties such as density, phase change temperature, latent heat and thermal conductivity of the composite PCM were also obtained by experimental methods. Thereafter, thermal response of the battery modules with the three TMS configurations was simulated using 3D finite element analysis (FEA) modeling in ANSYS Fluent.
Journal Article

Development of Hardware and Software for On-Board Hydrogen System

2019-04-02
2019-01-0377
The fuel cell engine is considered to be the ultimate technical direction for the development of vehicle power. The on-board hydrogen supply system is important in fuel cell system. However, the on-board hydrogen supply system is diversified, and the management is mostly integrated in the engine controller. Thus, the fuel cell engine controller is excessive coupled with design of on-board hydrogen supply system. In order to improve the portability and compatibility of the fuel cell engine controller, an independent controller of the on-board hydrogen supply system is designed. Meanwhile, the hardware and software are developed to control 35Mpa gaseous hydrogen storage system. After being tested in a high-pressure environment, the controller can detect temperature, pressure and ambient hydrogen concentration of the hydrogen supply system. Simultaneously, it can drive and control the hydrogen cylinder valve.
X