Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

3-Dimensional Numerical Simulation and Research on Internal Flow about Different EGR Rates in Venturi Tube of EGR System for a Turbocharged Diesel Engine

2024-04-09
2024-01-2418
Exhaust gas recirculation technology is one of the main methods to reduce engine emissions. The pressure of the intake pipe of turbocharged direct-injection diesel engine is high, and it is difficult to realize EGR technology. The application of Venturi tube can easily solve this problem. In this paper, the working principle of guide-injection Venturi tube is introduced, the EGR system and structure of a turbocharged diesel engine using the guide-injection Venturi tube are studied. According to the working principle of EGR system of turbocharged diesel engine, the model of guide-injection Venturi tube is established, the calculation grid is divided, and it is carried out by using Computational Fluid Dynamics method that the three-dimensional numerical simulation of the internal flow of Venturi tube under different EGR rates injection.
Technical Paper

A Comparative Study of Different Wheel Rotating Simulation Methods in Automotive Aerodynamics

2018-04-03
2018-01-0728
Wheel Aerodynamics is an important part of vehicle aerodynamics. The wheels can notably influence the total aerodynamic drag, lift and ventilation drag of vehicles. In order to simulate the real on-road condition of driving cars, the moving ground and wheel rotation is of major importance in CFD. However, the wheel rotation condition is difficult to be represented exactly, so this is still a critical topic which needs to be worked on. In this paper, a study, which focuses on two types of cars: a fastback sedan and a notchback DrivAer, is conducted. Comparing three different wheel rotating simulation methods: steady Moving wall, MRF and unsteady Sliding Mesh, the effects of different methods for the numerical simulation of vehicle aerodynamics are revealed. Discrepancies of aerodynamic forces between the methods are discussed as well as the flow field, and the simulation results are also compared with published experimental data for validation.
Technical Paper

A Comparative Study on Energy Management Strategies for an Automotive Range-Extender Electric Powertrain

2021-12-31
2021-01-7027
In this work, the influences of various real-timely available energy management strategies on vehicle fuel consumption (VFC) and energy flow of a range-extender electric vehicle were studied The strategies include single-point, multi-point, speed-following, and equivalent consumption minimization strategy. In addition, the dynamic programming method which cannot be used in real time, but can provide the optimal solution for a known drive situation was used for comparison. VFCs and energy flow characteristics with different strategies under Worldwide Harmonized Light Vehicles Test Cycle (WLTC) were obtained through computer modeling, and the results were verified experimentally on a range-extender test bench. The experimental results are consistent with the modeled ones in general with a maximum deviation of 4.11%, which verifies the accuracy of the simulation models.
Technical Paper

A Method for Building Vehicle Trajectory Data Sets Based on Drone Videos

2023-04-11
2023-01-0714
The research and development of data-driven highly automated driving system components such as trajectory prediction, motion planning, driving test scenario generation, and safety validation all require large amounts of naturalistic vehicle trajectory data. Therefore, a variety of data collection methods have emerged to meet the growing demand. Among these, camera-equipped drones are gaining more and more attention because of their obvious advantages. Specifically, compared to others, drones have a wider field of bird's eye view, which is less likely to be blocked, and they could collect more complete and natural vehicle trajectory data. Besides, they are not easily observed by traffic participants and ensure that the human driver behavior data collected is realistic and natural. In this paper, we present a complete vehicle trajectory data extraction framework based on aerial videos. It consists of three parts: 1) objects detection, 2) data association, and 3) data cleaning.
Technical Paper

A Method of Generating a Composite Dataset for Monitoring of Non-Driving Related Tasks

2024-04-09
2024-01-2640
Recently, several datasets have become available for occupant monitoring algorithm development, including real and synthetic datasets. However, real data acquisition is expensive and labeling is complex, while virtual data may not accurately reflect actual human physiology. To address these issues and obtain high-fidelity data for training intelligent driving monitoring systems, we have constructed a hybrid dataset that combines real driving image data with corresponding virtual data generated from 3D driving scenarios. We have also taken into account individual anthropometric measures and driving postures. Our approach not only greatly enriches the dataset by using virtual data to augment the sample size, but it also saves the need for extensive annotation efforts. Besides, we can enhance the authenticity of the virtual data by applying ergonomics techniques based on RAMSIS, which is crucial in dataset construction.
Technical Paper

A New Method of Comprehensive Evaluation Research and Application on Vehicle Engine Exhaust System

2018-04-15
2018-01-5011
During current design process of vehicle engine exhaust system, the frequently-used approach mainly concerns an individual component, which usually results in not meeting the overall design requirements or unreasonable design parameters. Here a concept of comprehensive evaluation metrics for vehicle engine exhaust system was established, of which a new weight factor assignment method was proposed, named change rate method, as the core of evaluation system to be especially studied. Taking muffler as an instance, six weight factor assignment schemes were adopted to compare with each other. And the rationality and practicability of the change rate assignment method was verified by the muffler noise experiments. The results show that, the change rate method makes the weight assignment more scientific and rigorous. And the new method can reflect the wishes of designers and completely displays the performance comparison and evaluation between schemes.
Technical Paper

A Novel Battery Impedance Model Considering Internal Temperature Gradient

2018-04-03
2018-01-0436
Battery models are often applied to describe the dynamic characteristics of batteries and can be used to predict the state of the battery. Due to the process of charging and discharging, the battery heat generation will cause the inhomogeneity between inner battery temperature and surface temperature. In this paper, a novel battery impedance model, which takes the impact of the battery internal temperature gradient on battery impedance into account, is proposed to improve the battery model performance. Several experiments are designed and conducted for pouch typed battery to investigate the electrochemical impedance spectroscopy (EIS) characteristics with the artificial temperature gradient (using a heating plate). Experimental results indicate that the battery internal temperature gradient will influence battery EIS regularly.
Technical Paper

A Novel Test Platform for Automated Vehicles Considering the Interactive Behavior of Multi-Intelligence Vehicles

2023-04-11
2023-01-0921
With the popularity of automated vehicles, the future mixed traffic flow contains automated vehicles with different degrees of intelligence developed by other manufacturers. Therefore, simulating the interaction behavior of automated vehicles with varying levels of intelligence is crucial for testing and evaluating autonomous driving systems. Since the algorithm of traffic vehicles with various intelligence levels is difficult to obtain, it leads to hardships in quantitatively characterizing their interaction behaviors. Therefore, this paper designs a new automated vehicle test platform to solve the problem. The intelligent vehicle testbed with multiple personalized in-vehicle control units in the loop consists of three parts: 1. Multiple controllers in the loop to simulate the behavior of traffic vehicles;2. The central console applies digital twin technology to share the same traffic scenario between the tested vehicle and the traffic vehicle, creating a mixed traffic flow. 3.
Journal Article

A Potential Field Based Lateral Planning Method for Autonomous Vehicles

2016-09-14
2016-01-1874
As one of the key technologies in autonomous driving, the lateral planning module guides the lateral movement during the driving process. An integrated lateral planning module should consider the non-holonomic constraints of a vehicle, the optimization of the generated trajectory and the applicability to various scenarios. However, the current lateral planning methods can only meet parts of these requirements. In order to satisfy all the performance requirements above, a novel Potential Field (PF) based lateral planning method is proposed in this paper. Firstly, a PF model is built to describe the potential risk of the traffic entities, including the obstacles, road boundaries and lines. The potential fields of these traffic entities are determined by their properties and the traffic regulations. Secondly, the planning algorithm is presented, which comprises three modules: state prediction, state search and trajectory generation.
Technical Paper

A Road Load Data Processing Method for Transmission Durability Optimization Development

2020-04-14
2020-01-1062
With increasing pressure from environment problem for reduction in CO2 emissions and stricter fuel targets from road vehicles, new transmission technologies are gaining more attention in different main market. To get suitable road load data for transmission durability development is becoming increasingly important and can shorten the development time of new transmission. This paper presents the procedure and methods of road load data development for durability design of transmission product and optimization based on the real road data measurement, statistical characteristics evaluation and fatigue damage equivalency. Apply this road load data method procedure on 3 type of vehicle which represent conventional vehicle, BEV and HEV.
Technical Paper

A Study of Crevice HC Mechanism Based on the Transient HC Test Data and the Double Zone Combustion Model

2008-06-23
2008-01-1652
The effectiveness of after-treatment systems depends on the exhaust gas temperature, which is low during cold-start. As a result, Euro III, Euro IV and FTP75 require that the emissions tests include exhaust from the beginning of cold start. It is proved that 50%∼80% of HC and CO emissions are emitted during the cold start and the amount of unburned fuel from the crevices during starting is much higher than that under warmed engine conditions. The piston crevices is the most part of combustion chamber crevices, and results of mathematical simulations show that the piston crevice contribution to HC emissions is expected to increase during cold engine operation. Based on the transient HC test data and the double zone combustion model, this paper presents the study of the crevice HC Mechanism of the first firing cycle at cold start on an LPG SI Engine. A fast-response flame ionization detector (FFID) was employed to measure transient HC emissions of the first firing cycle.
Technical Paper

A Study of Parameter Inconsistency Evolution Pattern in Parallel-Connected Battery Modules

2017-03-28
2017-01-1194
Parallel-connected modules have been widely used in battery packs for electric vehicles nowadays. Unlike series-connected modules, the direct state inconsistency caused by parameter inconsistency in parallel modules is current and temperature non-uniformity, thus resulting in the inconsistency in the speed of aging among cells. Consequently, the evolution pattern of parameter inconsistency is different from that of series-connected modules. Since it’s practically impossible to monitor each cell’s current and temperature information in battery packs, considering cost and energy efficiency, it’s necessary to study how the parameter inconsistency evolves in parallel modules considering the initial parameter distribution, topology design and working condition. In this study, we assigned cells of 18650 format into several groups regarding the degree of capacity and resistance inconsistency. Then all groups are cycled under different environmental temperature and current profile.
Technical Paper

A Systematic Scenario Typology for Automated Vehicles Based on China-FOT

2018-04-03
2018-01-0039
To promote the development of automated vehicles (AVs), large scale of field operational tests (FOTs) were carried out around the world. Applications of naturalistic driving data should base on correlative scenarios. However, most of the existing scenario typologies, aiming at advanced driving assistance system (ADAS) and extracting discontinuous fragments from driving process, are not suitable for AVs, which need to complete continuous driving tasks. In this paper, a systematic scenario-typology consisting of four layers (from top to bottom: trip, cluster, segment and process) was first proposed. A trip refers to the whole duration from starting at initial parking space to parking at final one. The basic units ‘Process’, during which the vehicle fulfils only one driving task, are classified into parking process, long-, middle- and short-time-driving-processes. A segment consists of two neighboring long-time-driving processes and a middle or/and short one between them.
Technical Paper

A Terminal-Velocity Heuristic Method for Speed Optimization of EVs in Multi-Intersection Scenarios

2024-04-09
2024-01-2001
The optimization of speed holds critical significance for pure electric vehicles. In multi-intersection scenarios, the determination of terminal velocity plays a crucial role in addressing the complexities of the speed optimization problem. However, prevailing methodologies documented in the literature predominantly adhere to a fixed speed constraint derived from traffic light regulations, serving as the primary basis for the terminal velocity constraint. Nevertheless, this strategy can result in unnecessary acceleration and deceleration maneuvers, consequently leading to an undesirable escalation in energy consumption. To mitigate these issues and attain an optimal terminal velocity, this paper proposes an innovative speed optimization method that incorporates a terminal-velocity heuristic. Firstly, a traffic light state model is established to determine the speed range required to avoid coming to a stop at signalized intersections.
Technical Paper

A Usability Study on In-Vehicle Gesture Control

2016-09-14
2016-01-1870
Gesture control has been increasingly applied to automotive industry to reduce the distraction caused by in-vehicle interactions to the primary task of driving. The aim of this study is to find out if gestures can reasonably be used to control in-car devices. Since there exists a big cultural difference of gesture between different countries because of its particularity, a set of gestures which support intuitive human-machine interaction in an automotive environment is searched. The results show a gesture dictionary for a variety of on-board functions, which conforms to Chinese drivers’ driving habits. Furthermore, this paper also describes a driving simulator test to evaluate the usability of gesture from different aspects including the effectiveness, efficiency, satisfaction, memorability and security. Static driving simulator is considered as an excellent environment for the in-car secondary task as its high safety level, repeatability and reliability.
Journal Article

Active Launch Vibration Control of Power-Split Hybrid Electric Vehicle Considering Nonlinear Backlash

2021-04-06
2021-01-0667
The backlash between engaging components in a driveline is unavoidable, especially when the gear runs freely and collides with the backlash, the impact torque generated increases the vibration amplitude. The power-split hybrid electric vehicle generates output torque only from the traction motor during the launching process. The nonlinear backlash can greatly influence the driveability of the driveline due to the rapid response of the traction motor and the lack of the traditional clutches and torsional shock absorbers in the powertrain. This paper focuses on the launch vibration of the power-split hybrid electric vehicle, establishes a nonlinear driveline model considering gear backlash, including an engine, two motors, a Ravigneaux planetary gear set, a reducer, a differential, a backlash assembly, half shafts, and wheels.
Technical Paper

Adaptive Cascade Optimum Braking Control Based on a Novel Mechatronic Booster

2017-09-17
2017-01-2514
BBW (Brake-by-wire) can increase the electric and hybrid vehicles performance and safety. This paper proposes a novel mechatronic booster system, which includes APS (active power source), PFE (pedal feel emulator), ECU (electronic control unit). The system is easily disturbed when the system parameters and the outside conditions change. The system performance is weakened. The cascade control technique can be used to solve the problem. This paper develops an adaptive cascade optimum control (ACOC) algorithm based on the novel mechatronic booster system. The system is divided into main loop and servo loop, both of them are closed-loop system. The servo-loop system can eliminate the disturbance which exists in the servo loop. So the robustness of the cascade control system is improved than which of the general closed-loop control system. Different control object is respectively chosen. The control-oriented mathematical model is designed.
Technical Paper

An Improved PID Controller Based on Particle Swarm Optimization for Active Control Engine Mount

2017-03-28
2017-01-1056
Manufacturers have been encouraged to accommodate advanced downsizing technologies such as the Variable Displacement Engine (VDE) to satisfy commercial demands of comfort and stringent fuel economy. Particularly, Active control engine mounts (ACMs) notably contribute to ensuring superior effectiveness in vibration attenuation. This paper incorporates a PID controller into the active control engine mount system to attenuate the transmitted force to the body. Furthermore, integrated time absolute error (ITAE) of the transmitted force is introduced to serve as the control goal for searching better PID parameters. Then the particle swarm optimization (PSO) algorithm is adopted for the first time to optimize the PID parameters in the ACM system. Simulation results are presented for searching optimal PID parameters. In the end, experimental validation is conducted to verify the optimized PID controller.
Technical Paper

An Interactive Racing Car Driving Simulator Based on TCP/IP

2009-05-13
2009-01-1609
Real-time interaction between a driver and the simulator is problematic. In this study, the racing car driving simulator has been established, which is composed of the following functional components: Motion Controller, Simview, Scenario Editor, Application Programmer Interface (APIs) and Crash Simulation. With TCP/IP protocol, the Motion Controller receives driver's manipulation, road unevenness and crash situation of Simview, then generates motion streams that reflecting the current conditions, and sends them to Simview and to the hydraulic platform. Furthermore, by detecting and analyzing general vehicle two-dimensional impact, a kind of complete and applicable calculation method has been established, and complicated vehicle impacts can be analyzed accurately. This racecar driving simulator places a racing driver in a interactive environment, and provides the driver with high-fidelity motion, visual, auditory, and force feedback cues.
Technical Paper

Analysis of Discretization for Transient Impact Loads on Door Closing

2021-04-06
2021-01-0799
The transient impact load generated by door closing is used as the input of the closing condition, which is an important part of door system investigation. In this article, the basic theory of transfer path analysis (TPA) is introduced to handle the abnormal vibration of the front-left door with the glass down stall position of a certain vehicle during the closure. The transient impact loads are discretized under the closed door and obtained using the inverse matrix (IM) method in TPA. Vehicle test and bench test are conducted. The closed door is subjected to the transient impact loads of the sealing strip and the latch on the body side. In the vehicle test, acceleration sensors are pasted on the target point and the reference point on the door to obtain the acceleration vibration response upon the door closure.
X